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B.3. Processing unit executive routine
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Features vs. Time with No Space Dimensions (only one window):

DEPENDENT CELLS:[_ D ]

INDEPENDENT CELLS:[_I |

FRAME CELLS:[ F_]

Input features per cell, n_features_in_per_cell: 8

Window time slices, n_window_time_slices: 3
Model space slices, n_model_space_slices: 1 1 1
Window space slices, n_window_space_slices: 1 1 1
Frame size: O 0 0

Feature Slices:

0 1 2 3 4 5 6 7
Now-2| I 1 I 1 I I I
Time Slices: Now-1] [ 1 1 L 1 1 1 1
Now| D D D D D D D D

Fig. 13
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1
AUTO-ADAPTIVE NETWORK FOR SENSOR
DATA PROCESSING AND FORECASTING

CROSS REFERENCE TO RELATED
APPLICATION

The present application claims priority of U.S. Provisional
Patent Application Ser. No. 60/850,279, filed Oct. 10, 2006
which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present subject matter relates generally to machine
learning and more specifically to efficient processing of
parameter values, which may be multi-dimensional, for pre-
dicting feature values as well as for use in calculating imput-
ing values for a range of applications providing auto-adaptive
functions.

BACKGROUND OF THE INVENTION

Auto-adaptive systems have many applications. These
applications include event recognition based on data mea-
sured over a number of successive time periods. Events take
many different forms. For example, events may include
detection of a target in a particular area, sensing of an out-of-
specification condition in a physical process environment or
correspondence of processed psychometric measurements
with a particular behavior prediction profile. Anomaly sens-
ing is often an element of detecting an event. Event recogni-
tion may also comprise evaluation of sensed data to recognize
or reject existence of conditions indicated by the data or to
initiate a particular action.

Signals are produced in response to sensor outputs, and the
signals are processed. A number of processing stages may be
used. Processing results are used, for example, in known
functions for calculating, predicting and imputing values,
updating learned functions, assigning plausibility to mea-
surements, discerning deviance between measured and
expected values and event detection. Commonly, a display is
used to convey information to a user.

Commonly assigned, copending U.S. patent application
Ser. No. 11/484,874 (the *874 application), which is incorpo-
rated by reference herein in its entirety, provides, inter alia,
significant improvements in processing capacity for auto-
adaptive networks that may be embodied in field program-
mable gate arrays (FPGAs). Consequently, powerful
anomaly detection techniques may be practiced on portable
systems that are remote from a base station. One example of
a portable system is an unmanned aerial vehicle (UAV).

The °874 application provides a context that comprehends
a method of forecasting future feature values for a cell of a
data array and a processor system wherein an array of data
collected over successive time slices is processed, with a
plurality of data points being provided during each time slice,
a number of future time slices is specified for which to fore-
cast a feature value, each future time slice being located a
number of time slices into the future from a current reference
point; a number of forecasts per feature is specified; a set of
past time slices to be utilized for each prediction is defined,
each said past time slice being located a number of time slices
in the past away from the current reference point correspond-
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ing to a number or time slices away from the current reference
point of a future time slice and defining a number of features
for each data point.

SUMMARY OF THE INVENTION

Embodiments of the present invention utilize a covariance
matrix, a mean value sum of squares and cross product
(MVSCP) matrix, their inverse matrices, and other learned
parameters that have been previously used. Prior embodi-
ments have disclosed use of these parameters for estimating
current imputed values. Embodiments of the present inven-
tion, however, utilize these values to generate forecasts. In
embodiments of the present invention, efficiencies of the
correlator disclosed in the *874 application are utilized to
provide a more powerful processor. The present embodi-
ments require updating only one MVSCP matrix and its
inverse per time slice. Likewise, the present embodiments
require updating only one covariance matrix and its inverse
pertime slice. A separate update to generate a current imputed
value is not required.

In the above-described context, embodiments of the
present invention comprise a method of generating predicted
values defining a current estimation set in at least one dimen-
sion for a dependent data location for which a value will be
predicted, said estimation set comprising the dependent data
location and a preselected number of nearest neighbor values
surrounding the dependent data point in a current time slice;
accessing estimation sets from each of a preselected number
of time slices corresponding to said current estimation set;
associating one estimation set with each dimension; generat-
ing a set of learned parameters comprising values produced
by a function incorporating either a MVSCP matrix or a
covariance matrix for each estimation set associated with a set
of past time slices; and updating each learned parameter to
compute a forecasting weight. A processor is also provided.

In a further form, a graphical deviance display is provided
for deviance values between expected and measured param-
eters. The subject graphical display converts deviance mag-
nitude values on a two-dimensional grid. Independent values
for the conversion include deviance magnitude values, rang-
ing from a configured positive value to a second, larger con-
figured value. Corresponding dependent values for the con-
version would be colors along a spectrum mapped on the
same grid. The relationship between the magnitudes and
wavelength values corresponding to the colors would be
monotone increasing, as specified by the user. One function
of the adaptive learning processor in the generation of devi-
ance values between an expected value of a cell and a calcu-
lated value.

In a further form, a processor is embodied of modules that
may be embodied by components such as FPGAs processing
feature values using selected modules. Each module calcu-
lates a component function of feature value generation. Indi-
vidual modules can be placed in a selected order, and more
than one of each type of module may be provided.

In selected further embodiments, learning parameters may
be generated based on calculations utilizing groups of values
from successive windows within a single time slice. A win-
dow is a group of values for each of a particular data point and
a preselected number of spatial nearest neighbors.

Another aspect of embodiments of the present invention
provides for data compression. In one form, a system trans-
mits one out of every N full sets of data arrays, e.g., images,
where N is a natural number. Learning parameters are also
transmitted. Consequently a base station may receive suffi-
cient input information to generate data arrays at times
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between reception of each N data array. Consequently,
requirements for remote transmitters for such parameters and
bandwidth and power may be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

The present subject matter may be understood by reference
to the following description taken in connection with the
following drawings.

FIG. 1 is an illustration of a UAV employing an embodi-
ment of the present invention gathering data and transmitting
intelligence to a command and control station;

FIG. 2 is a block diagram of a system incorporating an
embodiment of the present invention;

FIG. 3 is a block diagram of one form of processing unit
included in the embodiment of FIG. 2;

FIGS. 4 through 9 are each a flow diagram illustrating a
performance of modular statistical routines within the pro-
cessing unit;

FIG. 10 is a flowchart illustrating parallel processing of
generated values;

FIG. 11 is a chart illustrating values from various time
slices during a current selected time slice t0;

FIG. 12 is ablock diagram of a parallel processor perform-
ing the routines of FIG. 10;

FIGS. 13-15, 16 A-16C, and 17A-171 are each a chart use-
ful in illustrating selection of members of sets of data, called
estimation sets, to be used in successive calculations of a
recursive function;

FIG. 18 is a block diagram of a processing unit interacting
with an application program interface and sensors;

FIG. 19, consisting of FIG. 19« and FIG. 195 represents a
nominal set of input information from a video camera and
processed data from which clutter has been removed;

FIG. 20 is a block diagram illustrating a system utilizing a
plurality of processing units, each having a different configu-
ration;

FIG. 21, consisting of FIGS. 21 A and 21B, is a forecasting
steps worksheet; and

FIG. 22 is a forecasting sequence worksheet.

DETAILED DESCRIPTION

Embodiments of the present invention provide for opera-
tion referred to as auto-adaptive processing. Auto-adaptive
processing is not a recognized term of art, but is descriptive of
processing of data, often condition-responsive data received
from an array of sensors received in successive time slices, in
order to update adaptive functions and to calculate imputed
values of data for use in evaluating data and which may also
be used to predict data. Time slices may also be referred to by
such terms as clock periods or data cycles. For eachtimesslice,
measurement values and measurement plausibility values are
supplied to the system, and a learning weight is either sup-
plied to or generated by the system. While the above-cited
’874 application focuses on producing estimations, present
embodiments provide novel ways of forecasting values at
future times, which may occur milliseconds, hours or days
after a current time slice.

Auto-adaptive processing operations may include convert-
ing measurement values to feature values; converting mea-
surement plausibility values to feature viability values; using
each viability value to determine missing value status of each
feature value; using non-missing feature values to update
parameter learning; imputing each missing feature value
from non-missing feature values and/or prior learning; con-
verting imputed feature values to output imputed measure-
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ment values; and supplying a variety of feature value and
feature function monitoring and interpretation statistics.

The above operations are performed by applying functions
to selected data entries in a data array. Embodiments of the
present invention utilize a “windowing” function in order to
“index” through the data array to select successive groups of
data entries for processing. Field programmable windowed
functionality can be applied to many applications by pro-
gramming the data entries to be utilized for a calculation and
to set parameters of algorithms.

Embodiments of the present invention in one form provide
for the option of embodying an auto-adaptive processor in the
form of parallel, pipelined adaptive feature processor mod-
ules that perform operations concurrently. Tasks including,
function monitoring, interpretation and refinement opera-
tions are done in parallel. Distribution of tasks into modules
permits the use of simplified hardware such as FPGAs, as
opposed to full processors in various stages. Auto-adaptive
processing may be utilized for tasks that were previously
considered to be intractable in real time on hardware of the
type used in low powered, portable processors. The option of
modular pipelined operation simplifies programming; design
and packaging and allows for use of FPGAs in place of
high-powered processors. Stationary learned parameter
usage, based on the same estimation functions and learned
parameter values, can be used to produce the estimates that in
turn allow unexpected events to be detected more simply.

Embodiments of the present invention may be used in a
very wide variety of applications. These applications include
disease control, military attack prevention, measuring effi-
cacy of antibiotics, detecting un and monitoring system per-
formance to prevent breakdowns. Event recognition may be
used to trigger an alarm and initiate a response or produce a
wide variety of other reactive or proactive responses. In one
application, usability of data is evaluated so that a remote
device may decide whether or not to utilize its limited power
and bandwidth to transmit the data.

In the present description, FIGS. 1-3 describe hardware.
FIGS. 4-20 describe a processor environment for producing
estimated functions. This processor may provide a context for
present embodiments. FIGS. 21 and 22 are particularly
directed to forecasting embodiments. FIGS. 21 and 22 are
discussed prior to a discussion of FIGS. 4-20.

One of the many applications for systems including an
embodiment of the present invention is illustrated in FIG. 1.
In this illustration, an unmanned aerial vehicle (UAV) 1 is part
of an intelligence system. The UAV 1 comprises an array of
sensors, processors and a transmitter, further described and
illustrated below. The UAV 1 provides video information via
a radio frequency link 3 to a base station 4. In the present
illustration, the base station 4 is housed in a ship 5. The ship
5 is traveling in an ocean 6. The UAV 1 may detect enemy
craft 8. The enemy craft 8 may be beyond a horizon 10 of the
ship 5. The transmitter within the UAV 1 must have sufficient
bandwidth to provide detected video information to the base
station 4. Data processing equipment and transmitter modu-
lation circuitry must have sufficient capacity to transmit video
information. Ideally, all video information provided from the
UAV 1 to the base station 4 will be useful. To the extent that
the base station 4 will be receiving non-useful information,
the base station 4 will have to expend resources to call the
non-useful information. Processing of non-useful informa-
tion at the base station 4 will also slow the response to useful
information.

Ambient conditions will have a tendency to obscure the
view of the enemy craft 8 from the UAV 1. Moisture in the air
is a common ambient condition. Very often, moisture in the
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air will not be sufficient to block obtaining a useful image.
Optical filtering may also be used to reduce haze. However,
clouds or rainstorms may be located between the enemy craft
8 and the UAV 1. The video data obtained when the enemy
craft 8 are not viewable is referred to in the present description
as non-useful information. Commonly, UAVs simply collect
data and transmit the data to a base station. The UAV 1 must
be provided with sufficient resources to transmit non-useful
information. In accordance with embodiments of the present
invention, data processing is done to determine whether infor-
mation will be useful or not. One criterion that need be uti-
lized to determine whether information is useful is a contrast
level in an image sensed by the UAV 1. An image of cloud
cover will have low contrast, while a useful image of the
enemy craft 8 will include objects that have contrast with
respect to their backgrounds. By preventing transmission of
non-useful information, circuitry in the UAV 1 may be
designed to have less robust circuitry and lower power
requirements then a circuit which must also transmit non-
useful information. Capacity of transmission of useful infor-
mation and speed of transmission use increased. The resulting
decrease in total transmission of information permits the use
of simpler circuitry and lowers power requirements. The effi-
ciency and reliability of processing at the base station 4 is also
increased.

The present system comprises a rapid learning system. A
rapid learning system performs adaptive learning, as a neural
network. Additionally, the rapid learning system and moni-
tors, forecasts or controls data in real-time. The present speci-
fication is described in the context of the art of neural net-
works and adaptive systems. There is a wide range of
literature further describing the basis for mathematics utilized
here in and the construction and performance of learning
systems. Further background will be provided by R. J. Jan-
narone, Concurrent Learning and Information Processing,
Chapman & Hall, New York, 1997.

A general block diagram of the system incorporating an
embodiment of the present invention is shown in FIG. 2. The
UAV 1 comprises an electronics unit 20 including a sensor
array 22, a processing unit 24 and a transmitter 26. In the
present illustration, the sensor array 22 comprises a video
camera 30 having an array of pixels 32, each providing an
output indicative of light focused on the pixel 32. The present
embodiments may process measurements that are one-di-
mensional or multi-dimensional. A one-dimensional output
could comprise a gray-scale level wherein a single value is
indicative of pixel output. Alternatively, a plurality of values
may represent output of one pixel, such as gray-scale level
and color levels. The sensor array 22 provides data to the
processing unit 24. The processing unit 24 provides video
output to the transmitter 26.

The present embodiments will achieve the necessary func-
tions to produce meaningful output data as in the prior art.
However, as further described below, the present embodi-
ments will have a greater generality, efficiency, and afford-
ability as compared to prior art in embodiments. Since speed
and capacity of the system are vastly improved with respectto
the prior art, a depth of processing is made available in appli-
cations where it could not be used before, for example, real-
time video processing of entire rasters at many frames per
second. New market segments for adaptive processing are
enabled.

Data is gathered in successive time slices. The greater the
temporal resolution of the data gathering, the shorter the
period of each time slice will be. In order to provide for
adaptive processing, data received from each of a plurality of
sensors during successive time slices will be processed. The
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functions performed by the present embodiments include
receiving input values in consecutive time slices and perform-
ing processing operations during each time slice. These
operations may include estimating each input value from
current and prior input values through the use of a correlation
matrix; comparing each estimated value to its actual value to
determine whether or not the actual value is deviant; replac-
ing deviant or missing input values with their estimated val-
ues as appropriate; and updating learned parameters. Updat-
ing all learned parameters is important, because it allows
event recognition criteria to be continuously, automatically,
and adaptively updated over time.

FIG. 3 is a block diagram of the processing unit. Operation
of each of the modules 44 through 60 is described further
below with respect to FIGS. 4-9. Structure of these modules is
described with respect to FIG. 3. It should be noted that the
name of each module in FIG. 3 is selected for description in
context of the present illustration, and does not constitute a
particular limitation with respect to structure or operation.
The modules 44 through 60 are connected to provide data or
other signals either in series or pipelined to successive stages.
Particular connections are controlled by the program module
42. The connections are programmed to provide the operation
described in FIGS. 4-9 below. FIG. 3 is first described with
respect to the hardware therein and how estimating functions
are achieved. Forecasting in accordance with present embodi-
ments is explained.

The modules 44 through 60 each have an input terminal
connected to a register 80, 90, 100, 110, 120 and 130 respec-
tively. The registers 80, 90, 100, 110, 120 and 130 each
respectively provide an input to logic units 82, 92, 102, 112,
122 and 132 from the logic units 92, 112, 122 and 132 respec-
tively. First through sixth buffers 86, 96, 106, 116, 126 and
136 receive data from the logic units 82, 92, 102, 112, 122,
and 132 respectively. Additionally, in the modules 46, 50, 52
and 54, auto adaptive learning memory units 94,114, 124 and
134 are interactively connected with the logic units 92, 112,
122 and 132 respectively.

Each of the buffers 86 through 136 provides an output to
each respective successive module and to the output metrics
module 60. The output metrics module 60 includes registers
for functions selected by a user. In the present illustration,
registers 150, 152, 154,156, 158 and 160 are provided. These
registers may respectively receive alert information based on
comparison to a threshold or other signature, displays, even to
take values, forecast values, statistics, and events. The events
register 160 responds to selected criteria, for example, a pre-
selected degree of deviation of a measured value from an
expected value.

Input values and calculated values are provided from the
input metrics circuit 70. For example, a side scan sonar
receiver may include 512 sensors in a row. A number of
spatial dimensions for the side scan sonar row is one. Dimen-
sions may be spatial, temporal or may be indicative of each a
multiplicity of values associated with each cell, e.g., tempera-
ture.

Calculated values are generated to describe the data. The
calculated values are functions of input values selected to
reveal information about a collected set of data. In the present
illustration, the calculated values include four screener fea-
tures per cell. Screener and correlators features are functions
that are designed to discriminate improbable or out-of-range
data input points from background clutter. Screener and cor-
relator features provide measures of deviance between actual
and expected feature values. In one form of processing of side
scan sonar values, a set of functions has been developed for
distinguishing presence or absence of a target and whether the
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target is a Type 1 target or a Type 2 target. In one form, a Type
1 target is indicated when a first pair of feature deviance
values is large, and a Type 2 target is indicated when a second
pair of feature deviance values is large. Both pairs will have a
small deviance value in the absence of a target.

The provisional specification describes a forecaster, color-
coded deviance graphics, and generalized stage specifica-
tions. The present embodiments may be incorporated in the
context of the 874 application as well as in other environ-
ments. A brief, qualitative overview of the operation of the
processing unit 24 in FIG. 3 is first taken. Components are
described with respect to their antecedents in the *874 appli-
cation. The processing unit is embodied of modules that may
be embodied by components such as FPGAs processing fea-
ture values using selected modules. Each module calculates a
component function of feature value generation. Individual
modules can be placed in a selected order, and more than one
of each type of module may be provided.

The input metrics circuit 70 provides input signals derived
from sources, usually sensors, for processing by a processing
unit 24. The screener feature stage 44 and the screener kernel
stage 46 condition the inputs from the input metric circuit 70
used in statistical processing. The screener kernel stage 46
generates deviation values between measured and predicted
values. The correlator feature stage 48 further processes devi-
ance and plausibility values for selected time slices. The
forecaster stage 52 in one form uses the same current and
recent feature values for prediction as the correlator kernel
stage 50 uses for imputing.

Values from the correlator stage register 110 are translated
through the buffer 114 and are encapsulated in a forecast
packet delivered to the register 120. A forecast packet register
is embodied in the register 120. The forecasting packet may
include values such as a MVSCP matrix. A forecaster will
commonly include a routine for producing mean squared
deviance (MSD) values. The forecaster stage produces
learned cross-product parameters as part of the forecasting
process.

Forecaster

During each time slice, the forecaster computes one or
more forecast values for each feature in each cell. For all
correlator kernel configurations, the forecaster can be config-
ured to predict a broad variety of future values at every time
slice. For example, the forecaster may be configured to pre-
dict each feature value 1, 2, or 3 time slices into the future; or
alternatively, it may be configured to predict each feature
value 1, 2, 23 or 24 time slices into the future. To provide this
kind of variety, this forecasting specification includes the
number of forecasts to be computed per feature as well as the
number of time slices into the future for which each such
forecast is to be produced.

Forecasting resembles correlator kernel imputing in three
ways. First, the forecaster uses the same independent feature
window configuration as the correlator kernel. In either case,
independent feature time slices can be configured to include a
broad variety of previous values. For example, independent
variables may include features observed 1, 2, or 3 time slices
ago; alternatively, they may include features observed 1, 2, 23
and 24 time slices ago; and so on.

Second, in order to compute forecasts, the forecaster uses
learned parameters from the correlator kernel including
MVSCP matrix values and MVSCP inverse values. Likewise,
the present embodiments require updating only one covari-
ance matrix and its inverse per time slice. Third, the forecaster
operates in either the one-window mode or the many-win-
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dows mode, closely resembling the correlator kernel. When
operating in either the one-window or the many-windows
mode, forecaster estimates use practically the same window
function structure as the correlator kernel for managing inde-
pendent variable values during estimation.

Forecaster operation also differs from correlator kernel
operation in three ways. First, the forecaster predicts future
values for prospective decision-making and control. By con-
trast, the correlator kernel imputes current values for deviance
detection and deviant or missing value replacements. Second,
the forecaster updates learned estimation weights first and
then uses them to compute estimation weights. By contrast,
the correlator kernel computes estimation weights from the
previous time slice first, then uses them for estimation, and
then updates estimation weights. Third, the forecaster
updates learned forecasting cross-product parameters in
order to compute forecasting weights. By contrast, the corr-
elator kernel updates MVSCP parameters in order to compute
imputing weights.

The forecaster uses the same current and recent feature
values for prediction as the correlator kernel uses for imput-
ing. However, the forecaster computes distinct forecasting
weights for every future time slice. In order to do so, the
forecaster uses learned MVSCP or covariance matrix inverse
values, deviance values, learning weights, and other values
that were computed previously by the correlator kernel. The
correlator kernel supplies one set of such values at the end of
each time slice to the forecaster in the form of a forecasting
packet. The forecaster uses one such packet to compute fore-
casting cross-products for each set of future forecasts. The
forecaster then uses those cross-products as well as inverse
values from the correlator kernel to compute forecasting
weights.

The forecaster obtains its independent variable values from
the correlator kernel register. In addition, the forecaster man-
ages its own, forecasting packet register, containing forecast-
ing packets from the correlator kernel. The forecaster must
store as many such packets as the farthest number of future
time slices to be forecast. For example, in order to predict
feature values 1, 2, 23, and 24 time slices into the future, the
forecaster must use each forecasting packet that the correlator
kernel produced 1, 2, 23, and 24 time slices ago. In order to do
so from one time slice to another, the forecaster must store all
packets from one time slice ago to 24 time slices ago in its
packet register. For efficiency, the packet register may com-
prise a daisy wheel register for storage management, just as
other stages that employ recent history manage their own
registers.

When forecasting is enabled, the correlator kernel pro-
duces a forecasting packet at the end of each time slice. The
packet contains MV SCP matrix, inverse matrix, current devi-
ance, learning weight values and other values that the fore-
caster uses for prediction, as outlined next, described in a
separate section below, and described in statistical terms else-
where.

During each time slice and for each forecast into the future,
the forecaster completes four steps:

Updating MVSCP cross-products or covariance values

Computing forecasting weights

Computing forecast values

Updating forecast MSD values

Saving forecast values FIG. 21,

Each of these steps will be explained for the above illus-
tration with respect to FIG. 21, forecasting steps worksheet.
consisting of FIGS. 21A and 21B.

In the worksheet and the remainder of this section, fore-
casts 1, 2, 23, and 24 time slices ago are labeled forecast t+1,
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t+2, t+23, and t+24, respectively. During step 1), the fore-
caster updates four sets of MVSCP cross-products, using
independent feature values that were observed 1, 2,23, and 24
time slices ago, along with current feature values as shown.
These independent feature values, along with corresponding
learning weight values and MVSCP or covariance matrix
inverse values are obtained from forecasting packets, as
shown in the forecasting_steps worksheet. In order to pro-
duce bona fide, weighted least squares forecasting weights
and forecasts, these cross-products are updated in precisely
the same sequence that was used to update their correspond-
ing inverse matrix. For the same reason, the cross-products
are based on precisely the same learning weights as well as
independent variable values as those that were used to update
the corresponding inverse matrix.

During step 2), forecasting weights are computed as a
function of MVSCP cross-product or covariance and
MVSCP or covariance inverse values. Weights for predicting
values one time slice into the future are based on cross-
products and inverses corresponding to one time slice ago;
weights for predicting values two time slices into the future
are based on cross-products and inverses corresponding to
two time slices ago; and so on.

During step 3), forecast values are computed as a function
of current feature values and forecasting weights. Current
feature values along with weights for predicting values one
time slice into the future are used to forecast values one time
slice into the future; current feature values along with weights
for predicting values two time slices into the future are used to
forecast values two time slices into the future; and so on.

During step 4), forecasting MSD values are updated based
on squared differences between the current dependent feature
values and their corresponding forecasts, along with learning
weights that were used to produce the forecasts. As shown in
FIG. 21, MSD values for forecasts one time slice into the
future are based on corresponding forecasts and learning
weights from one time slice ago; MSD values for forecasts
two time slices in the future are based on corresponding
forecasts and learning weights from two time slices ago; and
SO on.

During step 5, forecast values are saved into one or more
forecast history registers. One such register is required for
each prediction time slice, and its size depends on the time
slice. For the above example, the register for predicting one
time slice into the future must contain forecasts for predicting
one time slice into the future that were computed currently;
the register for predicting two time slices into the future must
contain forecasts for predicting two time slices into the future
that were computed currently and one time slice ago; and so
on. In this way, the register for each prediction time slice will
contain the required forecasts for updating MSD values dur-
ing the next time slice.

The forecaster must wait longer to begin updating MSD
values than to begin other functions. Also long-term forecasts
must begin later than near-term forecasts. These distinctions
are shown in FIG. 22, which is a forecasting sequence work-
sheet, for the above example based on four forecasts. Steps 1
through 3 can be performed after only one time slice for
forecast t+1, but steps 1 through 3 can only be performed two
time slices afterwards for forecast t+2, and so on. Step 4
delays are twice as long, because computing MSDs requires
waiting until not only forecasts have been computed but also
actual values corresponding to them have been observed.
Thus, step 4 can be performed two time slices after the first
time slice for forecast t+1, but step 4 can only be performed
four time slices afterwards for forecast t+2, and so on. Step 5
delays are the same as those for steps 1 through 3, as shown.
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Stage Structure

A generalized stage structure is provided. Instead of the
dedicated stage structure for the six stages depicted in FIG. 3
of the ’874 application, therein, this generalization allows
n_stages each of which could fall in an n_stage_type cat-
egory. The *874 application discloses n_stage_types=6 cat-
egories: input, feature, screener kernel, correlator kernel,
forecaster, and output, which might correspond to n_stag-
e_type=0, 1, 2,3, 4, and 5, respectively. The present embodi-
ments may comprise those stages, among others. Each of
these stages comprises a module for calculating a component
function of feature value generation. More than one of each
type of stage may be provided. They may be cascaded in any
order.

Nested within each type of stage, n_substage_types pos-
sible categories may be included. For example, application
Ser. No. 11/484,874 discloses a stage. Present embodiments
could include three screener feature stage types: user-sup-
plied, additive window, and conjunctive. Thus, n_stag-
e_type=2 might be further broken down into n_substag-
e_types[2]=3, having n_substage_type[2]=0, 1, and 2,
respectively.

Based on this general structure, the user would be able to
specify n_stages in a configuration. The stages would run
sequentially. For each such stage, the user would further
specify its n_stage_type, or n_substage_type. For each such
selected stage type and subtype, the user would complete the
specification, along the same lines that already implemented
in a currently implemented Application Program Interface
(APD).

Graphical Deviance Display

A graphical deviance display is provided for deviance val-
ues. The subject graphical display simply converts deviance
magnitude values on a two-dimensional grid. Independent
values for the conversion would include deviance magnitude
values, ranging from a configured positive value to a second,
larger configured value. Corresponding dependent values for
the conversion would be colors along a spectrum mapped on
the same grid. The relationship between the magnitudes and
wavelength values corresponding to the colors would be
monotonically increasing, as specified by the user. In the
present embodiment, the display register 152 includes a con-
version circuit to map values for display.

Image Interpolation for Data Compression

During each time slice, a forecaster may produce learned
parameters for forecasting image values for each among n
future image time slices. Instead of transmitting each image
during each time slice, an auto-adaptive process may occa-
sionally transmit learned parameters when they have substan-
tially changed over time slices and then intermittently trans-
mit a reduced number of image values. When the reduced
number of image values is received, a receiver interpolation
process may use them and the most recently transmitted
learned parameters to interpolate non-transmitted images
between those that were are transmitted.

A forecaster may also treat each non-overlapping window
within an image as if it were produced during consecutive
time slices. During each window time slice, a forecaster may
produce learned parameters for forecasting window values
for each among n future window time slices. Instead of trans-
mitting each window during each window time slice, an auto-
adaptive process may occasionally transmit learned param-
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eters when they have substantially changed over window time
slices and then intermittently transmit a reduced number of
window values. When the reduced number of window values
is received, a receiver interpolation process may use them and
the most recently transmitted learned parameters to interpo-
late non-transmitted windows between those that were are
transmitted.

An auto-adaptive process may use also use auto-adaptive
forecasting process combined with a corresponding receiver
interpolation process for compressing images, as well as a
second auto-adaptive forecasting process combined with a
corresponding receiver interpolation process for compressing
windows, in order to achieve two forms of data compression
at once.

In either the image data compression or the window data
compression case, or in the event that both are combined,
effective data compression may be achieved by continuously
learning how to interpolate between every n time slices at the
sending station, transmitting every nth time slice along with
learned parameters, and then interpolating at the receiving
station.

Processor Environment for Producing Estimated
Functions

Referring to FIGS. 4 through 20, the processing unit 24
processes input data to provide known forms of statistical
functions. Embodiments of the present invention facilitate
real time generation of statistical functions by the processing
unit 24. Processing of large sets of data that have previously
been intractable in the environment of a self-powered remote
vehicle is also facilitated. The processing unit 24 may include
functionality to provide selected statistical calculations. The
inclusion of a particular module in the processing unit 24 is
optional. The requirements for types of modules to be
included in the processing unit 24 are a function of the appli-
cation in which the system is employed. The particular mod-
ules included in the present illustration comprise a screener
feature module 44, a screener kernel module 46, a correlator
feature module 48, a correlator kernel module 50, a forecaster
module 52 and an output module 54.

The operation of these modules is described with respect to
FIGS. 4 through 9 respectively. A data-responsive module 60
is provided that may compare process data to criteria such as
alert threshold values or event profiles. Additionally, the data-
responsive module 60 may display values, and may also reg-
ister imputed values, forecast values and statistics and event
profiles. An input metrics circuit 70 is synchronized by a
clock circuit 72 to provide inputs to the processing unit 24
comprising signals received from the sensors. The clock cir-
cuit 72 also synchronizes provision of output metric values in
the module 64 for each time slice. In traditional applications,
a single processing unit 24 may be provided. However, for
facilitating processing of data represented by large numbers
of input values, e.g., entire video frames at a nominal repeti-
tion rate, it is desirable to provide for parallel, pipelined
operationutilizing a plurality of processing units 24 as further
described with respect to FIG. 10.

FIG. 4 is a flowchart illustrating operation of the screener
and kernel module 46. While the description of operation may
be described from initial startup, the present description
assumes that prior time slices have already occurred and that
information is already present in the various registers. This is
the typical situation. A routine that operates the screener
feature module 44 will be referred to as a calling program 200.
The calling program 200 starts at block 202, at which con-
figuration programs are loaded. Configuration values include,
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for example, the number of dimensions, here one, the number
of data inputs per dimension, here 512, and the number of
input metric values per data point. Where the input is total
sound intensity, the number of input metrics per data point is
set at one. Where a data point includes sound intensity at each
of three frequencies, the number of input metrics per data
point is set at three. Configuration values also include the
number of screener features per data point, here set at four and
the number of correlator features per data point, here set at
four. At block 204, the calling program 200 allocates memory
for inputs from the input metrics circuit 70.

Atblock 206, the program 200 locates memory cells for the
API metrics. In the present illustration, allocated API
memory would include memory for 512 cell metric values
and their 512 corresponding plausibility values. Plausibility
value as used in this description is a number between zero and
one used by a rapid learning system to control the weight ofan
input measurement with respect to learning. In one preferred
form, the calling program 200 allocates data locations for API
10 values for 512 cells, locations for 512x4 for feature output
values and memory for 512x4 correlator output feature val-
ues. The program 200 enters into a loop 208 in which updates
and calculations may be performed. The loop 208 begins with
block 210, and ends with block 216, which may return to the
block 210.

The block 210 provides the locally programmable option
to modify the above-described API configuration of memory
locations. At block 212, input values are loaded into the
memory locations dedicated thereto, and the corresponding
plausibility values are also loaded. The calling program 200,
at block 214, calls the first processor program, further
described with respect to FIG. 5 below, which may comprise
a set of deviation values between measured and predicted
values. Following, at block 216, the system decides whether
to return to block 210 to repeat the process or to proceed to a
block 218 at which configuration values may be stored, after
which at block 220, the routine stops. Criteria that may be
employed at block 216 may include whether processing of
data produced during each of a preselected number of time
slices has been completed. Additionally, a utility library 224
may be accessed. The library 224 includes a broad variety of
display and control functions for processing data to be fur-
nished to the output metrics module 60 (FIG. 3).

FIG. 5 is a flowchart illustrating programming and opera-
tion of the screener kernel module 46. A processing unit
executive routine 240 begins at the block 242. At block 244,
the processing unit executive routine 240 loads the API values
accessed by the calling program 200. At block 246 the values
may be organized for parallel processing in embodiments in
which parallel processing is utilized. A significant factor in
deciding whether to use parallel processing is the rate of
arrival of new data and the period of each time slice. In a
situation in which new data is arriving every 10 ns, and one
processor required 75 ns to process data, then eight proces-
sors running in parallel would be needed to process data in
real-time. It should be remembered that in the present context,
real-time refers to processing without building up a backlog
of sensor data. In the current illustration, a line of cells of 512
values is organized. Each parallel processor would process 64
cells. The processor routine would organize parallel process-
ing by distributing sets of 64 input values and 64 plausibility
values to corresponding processing modules.

At block 246, parallel output metrics are collected. Block
248 calls one or more processing units described in further
detail with respect to FIG. 6. At block 252, free parallel
outputs may be collected. At block 254, auto-adaptive learn-
ing memory (ALM) values are saved to a core file. At block
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256, processing for a current time slice is completed, and the
processing unit executive routine 240 returns to block 242 for
processing during a next time slice.

FIG. 6 is a flowchart illustrating programming and opera-
tion of a processing unit subroutine 270 which is called at
block 248 in FIG. 5. The processing unit subroutine 270
begins with block 272, at which an operation performed in
accordance with embodiments of the present invention and
described in the present context as a window function is
called. The window function is described in greater detail
with respect to illustrations beginning with respect to FI1G. 13
below. The windowing feature selects data from nearest data
locations in time and space for calculation of values. At block
274, the screener kernel function, further described with
respect to FIG. 7 below is called. At block 278, the correlator
kernel function, described with respect to FIG. 8 is called. At
block 280 the forecaster function may be called and at block
282, a range of output values for a current time slice is tabu-
lated. The subroutine 272 utilizes a utility library 284.

When the screener kernel 274 is called, each feature input
value for a given time slice is transformed into a deviance
value. The deviance value comprises an input for the correla-
tor feature function at block 276. When the correlator kernel
278 is called, the correlator kernel function 278 utilizes the
window function to impute each current value as a function of
a configurable number of nearest neighbor of values in time
and space. This is explained in further detail beginning at the
FIG. 13 below. At block 278, a correlation matrix is provided
to the forecaster.

The forecaster function 280, when utilized, produces a
forecast for each feature and each time slice, including any
configurable number of future time slice forecasts. The fore-
caster function 280 may utilize prior art forecasting functions.
While the forecasting functions are known, the forecasting
output values are utilized in accordance with embodiments of
the present invention to improve event recognition, including
a values, deviance detection and deviance correction. Estab-
lished correlational systems cannot distinguish underlining
deviant values from apparent deviant values that are not in
fact deviant. The present method can uniquely discount such
apparently deviant values by using previously generated fore-
casts and to identify those apparently deviant values that are
close to their forecast values, and therefore most likely are not
deviant. The output processor function 282 received deviance
values from the screener kernel function 274 in the correlator
kernel 276 along with all ports from the forecaster function
284 for utilization in accordance with embodiments of the
present convention as further described below.

FIG. 7 is a flowchart illustrating the operation in program-
ming of the screener kernel 274. At block 290, learning
weights are updated. At block 292, deviance value estimation
is performed, and an ALM updating is performed. At block
294, in accordance with embodiments of the present conven-
tion, the screener kernel function 274 provides output plau-
sibility values for use in identifying deviant events. At block
298, downstream registers are updated. The functions at
blocks 290 through 298 are separable and may be performed
in parallel.

FIG. 8 is a flowchart illustrating the operation and pro-
gramming of the correlator kernel 278. At block 310, imput-
ing weights are calculated based on most recently updated
correlator learned parameters. At block 312, deviance values
are estimated by use of the correlator kernel 278. At block
314, output plausibility values are set utilizing the correlator
kernel 278. At block 318, the ALM values are updated, and at
block 320, downstream registers are updated.
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FIG. 9 is a flow chart illustrating the operation and pro-
gramming of the output processor 282. At each time slice, the
output processor routine 282 calls an alert processor routine
330 which provides values to the alert module 150. The alert
processor module 330 utilizes deviance and plausibility val-
ues provided to it from the screener kernel module 46 and the
correlator kernel 50. The alert processor routine 330 employs
an easily programmable window function. The window func-
tion selects an estimation set, described with respect to FIGS.
13-17 below, for processing. The display processor routine
332 operates in a similar matter to produce outputs for graphi-
cal display. A global imputer routine 334 operates similarly to
the alert processor routine 330 to produce imputed metrics.
The imputer routine 334 utilizes plausibility values based on
previously obtained input metrics from the data gathering
routine 210 (FIG. 4). A forecaster routine 336 produces
excessive outputs. A statistical report processor 45 and the
event longer routine 340 produced current results and over-
write prior results.

FIG. 10 is a flowchart illustrating parallel operation of the
processor module of FIG. 5. During each time slice, the
processing unit executive routine 240 provides the parallel
processing module 246 (FIG. 5) with API values 350. At
block 352, the parallel organizer 246 provides API input
values including configuration parameters and input mea-
sured values along with auto-adaptive learning memory val-
ues. In block 352, values are distributed to separate process-
ing modules. For example, the first 64 input values and their
corresponding plausibility values would be supplied to mod-
ule 272-1. Successive groups of 64 output values and corre-
sponding plausibility values would be supplied to modules
2722 through 272n. In this manner, output values for an entire
line are collected and at step 354 are combined and provided
as collected parallel outputs and for the API at block 250. The
parallel collected output processor output values 250 are
received at an output 358 (FIG. 5). Consequently, operation of
the multiple processing units is enabled.

Referring again to FIG. 3, operation of the processing unit
24 is described. Output signals produced during each of the
number of time slices are used during a current time slice,
which will be referred to as t0. The outputs being utilized
during time t0 are illustrated in FIG. 11, which is a chart
illustrating the signals used by each of the modules 44-60
during the time slice t0. The processing unit 24 receives the
values collected during step 352 (FIG. 10). When the input
measured time slices arrive sufficiently slowly so that the
processing unit 24 keep up with successive inputs, the mod-
ules 44-60 could operate sequentially. Alternatively, the pro-
cessing unit 24 could sense a higher data input rate as follows.
At the beginning of a time slice t0, the screener feature mod-
ule 44 would convert input metrics 352 (FIG. 10) for the time
slice t0 into outputs of the screener feature module 44 when it
sends the values into the buffer 86 for later downstream
processing. Meanwhile, the screener kernel module 46 has
transformed feature values from time slice t-1 based on the
input metrics received in time slice t-1 into deviance values
and placed the values into buffer 96 for later downstream
processing.

The correlator feature module 48 provides outputs to the
buffer 106. Similarly, the correlator control module 50 pro-
vides calculated outputs based on deviance values previously
computed by the screener kernel module 46 at time slice t—1
and based on input metrics received in time slice t-3 into
deviance values to the buffer 116. Meanwhile, the forecaster
module 52 would use output values that were previously
updated by the correlator kernel module 50 at time slice t-1.
Based on input metrics received at time slice t—4, forecast



US 7,877,337 B2

15

values for time slice t-3 were produced. Optionally, addi-
tional values may be produced utilizing more time slices into
the future relative to time slice t-4 and placed into the fore-
caster module buffer 126. Concurrently, the output module 54
would transform input values received from time slice t-5
along with output deviants and plausibility values from the
screener kernel module 46 corresponding to input values
received from the time slice t-5 that were completed during
time slice t-4. Further, the correlator kernel output 50 input
receives deviance and plausibility values corresponding to
input values received at time slice t-5 that were computed
during time slice t-2, and provides various output values and
stores them in register 136, the future updating output metrics
358 (FIG. 10), alerts 150, displays 152, imputed values 154
and the statistics registers 158.

FIG. 12 is an illustration of a parallel, pipelined configu-
ration for the processor 40. A group of processors 272 may be
connected in parallel. Further, a plurality of such groups may
be connected in series to comprise a pipeline. Daisy wheel
registers, each of which can be quickly updated at the end of
each time slice, may be used to embody the registers 80, 90,
100,110,120 and 130 (FIG. 3) when used in conjunction with
buffered pipelining. By providing for parallel processing,
output metrics may be produced just as quickly with one set of
register hardware as with the alternative of having six distinct
sets of register hardware operating in a sequential fashion.
One sixth of the hardware also requires % of the logic code to
be programmed.

FIGS. 13 through 17 are each a chart useful in understand-
ing processing data sets having various numbers of temporal
and spatial dimensions. Embodiments of the present inven-
tion utilize a form of “nearest neighbor” processing in order to
impute expected values for particular cells. As further
explained below, the processor 40 utilizes a Markov chain. A
Markov chain embodies a model of sequences of events
where the likelihood of an event depends only on a preceding
event or a nearest neighbor event. In prediction and simula-
tion, the principle of the Markov chain is applied to the
selection of samples from a probability density function to be
applied to the model. The “windowing” function described
above refers to the selection of adjacent cells within selected
dimensions to be processed together. By utilizing the Markov
chain, reliable estimations may be made for imputed values,
and the complexity, expense and time required to generate an
inverse of a covariant matrix may be greatly reduced.

In each of the illustrations of FIGS. 13-17, a hypothetical
situation is selected in which the sets of data describing dif-
ferent sorts of environments are defined. In each illustration,
the environment is characterized by a number of temporal and
spatial dimensions. In each case, an imputed value calculated
during a current time period t0 will be described as a depen-
dent value indicated by space D. The dependent value D is
calculated as a function of independent values, indicated in
each matrix location as 1. The independent values I are values
that are taken as having been established with respect to the
cell currently being computed. Generally the independent
values I will have been established for either successive time
periods or successive locations. Another class of independent
values I is referred to as F. These values are “frame” values.
They are described separately since they are in cells which do
nothave an adjacent location on at least one side ofthe cell. In
each of the illustrations below, the dependent value is calcu-
lated in terms of values obtained from two prior time slices,
labeled t-2 and t-1, which are the two successive time slices
preceding time t0. In each case, values are entered in a matrix
wherein rows correspond to time slices t—2,t—1 and t0 respec-
tively.
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Each column corresponds to a location. For example, in
FIG. 13, eight locations, labeled 0 through 7 are provided. In
the illustrations of FIGS. 14-17, sixteen spatial locations are
provided. The outer locations are labeled F and F, respectively
corresponding to left and right frame cells respectively. In
practice, the outer locations could be at left and right hori-
zontal ends of a space. However, left and right are used here
only to denote first and last locations. Other spatial relation-
ships or non-spatial relationships could be represented. The
locations between the outer frames F and F are labeled 0
through 13. In one form, frame values may be set to zero.
Providing frame values allows the windowing function to
select the number of “nearest neighbors™ in each estimation
set even when a value does not have a nearest neighbor.

In operation of embodiments of the present invention, a
“windowing” function selects an appropriate set of I values
from a data array to comprise a correlation matrix used to
impute a D value. This set is a function of the estimation
algorithm. The data array referred to here is data responded to
by a system. In one preferred form, the data array is a record
organized by sensors producing outputs for data points,
attributes per data point and time slices. Attributes per data
point may include values for each of the different features,
values in each of a plurality of dimensions or other known
forms of measurement. For purposes of the present descrip-
tion, this set is called an estimation set. As further described
below, the members of an estimation set are a function of the
number of attributes of a data point and the number of time
slices utilized.

In one preferred from, the estimation set comprises a set of
nearest neighbor values in each of N dimensions, where N is
a non-negative integer. Dimensions may be spatial or tempo-
ral. More than three spatial dimensions or one temporal
dimension may be utilized to characterize a data point.
Indeed, in some cosmological models, there may be dozens of
spatial dimensions. Where a value is measured over time, M
sets of values, one from each of M successive time slots, are
utilized. Commonly, M is selected to be three, representing
the time slots t-2, t-1 and t. Other values may be selected.
However, M=3 has been found to be a useful optimization of
complexity of processing versus precision of result. Addition-
ally, in accordance with embodiments of a preferred form of
the present invention, it has been found that it may be
assumed that correlations for sets including F and F may be
used in the same manner as sets in the center of a data array.

FIG. 13 is representative of measurement of a value versus
time but without spatial dimensions. There are eight features
describing a given cell. Here, a cell is a row of data. The
parameter indicated by the data in each location comprises a
value that is not related to an adjacent value. In this case, in
each of the columns 0 through 7, the current value at time t0
is a function of the two preceding values respectively at times
t-2 and t-1 respectively.

FIG. 14 represents data for a situation in which one spatial
dimension is measured with respect to time. FIG. 4 may be
used to represent the above-described side scan sonar appli-
cation. A “window” comprising data from the three time
periods of interest and the independent values surrounding a
current location to be computed is selected. The window has
anumber of columns and rows that correspond to the estima-
tion set. In the present illustration, each “window” will com-
prise the estimation set. The window will be indexed across
the data matrix one step at a time so that current estimation
sets are accessed and imputed values D can be calculated. The
first window will include locations to F, 0 and 1. In FIG. 14,
these are indicated by light shading. Successive “windows,”
or estimation sets, such as 0-1-2, 2-3-4, etc. will be selected in
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sequence. In FIG. 14, a middle window cell comprising loca-
tions 5-6-7 is illustrated. Indexing proceeds through the end
of the dimension up to the last window cells, which in the
present illustration are cells 12, 13 and F.

FIG. 15 illustrates a tabulation of data obtained for param-
eters in one spatial dimension at a given time. The rows
represent space slices rather than time slices, and the columns
indicate locations within each dimension. The dependent
value to be imputed is calculated in terms of the preselected
number of surrounding locations. In the present illustration,
the estimation set consists of eight surrounding locations.
These locations are the surrounding columns indicative of
locations, and the two preceding rows indicative of measure-
ments in successive dimensions.

FIG. 16 consists of FIGS. 164, 165 and 16c¢. The param-
eters measured in this illustration include one feature per cell.
Each parameter is time variant and has two spatial dimen-
sions. The estimation set includes values in two preceding
time slices and in surrounding locations represented by adja-
cent columns. Additionally, as in FIG. 15, values and sur-
rounding dimensions are used to calculate the imputed value.
FIGS. 164, 165 and 16¢ respectively represent data matrices
for time slices t-2, t—1 and t0 respectively. Each independent
value submatrix comprises 15 boxes. The dependent value D
needs to be located between both preceding and succeeding
dimensional rows.

FIG. 17 consists of FIGS. 17a-17i. In this illustration, there
is one feature per cell having three spatial dimensions. Three
window slices representing values produced during time
slices t-2, t—1 and t0 respectively. Values for a third dimen-
sion are based on measurements in two other dimensions.
FIGS.17a,17b and 17¢ respectively represent initial values at
the locations F, zero and 1. In these matrices, a full set of
surrounding locations is not available. Full value matrices are
illustrated in FIGS. 17d through 17:. An illustrative calcula-
tionis illustrated with respect to FIGS. 17d, 17¢ and 17f. As in
the case of FIG. 16, rows surrounding the dependent value D
must be included in the value matrix. Additionally, the matri-
ces surrounding the dependent value in the third dimension
must also be included. Imputed values may thus be calculated
for the point in a three-dimensional space.

FIG. 18 is a block diagram of a processing unit interacting
with an application program interface and sensors. F1G. 18 is
a block diagram similar to FIG. 2 illustrating and electronics
package 20 and sensor 30 interacting with a processing pack-
age 424. The processing package 424 has input data and
output data coupled via an API 430 to a process simulator
436. A sensor control unit 440 may be coupled between the
process simulator 436 and the sensor 30. The sensor control
circuit 440 may adjust values for black-and-white levels,
contrast and filtering functions. Additionally, a telemetry con-
trol circuit 450 may be coupled between the process simulator
436 and the transmitter 26. In one embodiment, the telemetry
control 450 responds to the output matrix unit (FIG. 3) to
transmit or reject selected output data.

FIG. 19, consisting of FIG. 19« and FIG. 195 represents a
nominal set of input information from a video camera and
processed data from which clutter has been removed. FIG.
19a represents a nominal display of raw data illustrating
amplitude versus wavelength of detecting video signals on an
arbitrary scale. FIG. 195 represents output data as processed
by the processing unit 424. Commonly, the processing rou-
tines performed by the processing unit 424 reject meaningless
returns and provide out put information with minimal or no
“false positive” output signals.

FIG. 20 is a block diagram illustrating a system utilizing a
plurality of processing units 524, 524-1, 524-2, . . . , 524-n.
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Each processing unit 524 is configured differently so that
efficacy of various settings may be compared. Each process-
ing unit 524 may perform the same function, but with difter-
ent settings. Periodically, for example, weekly, a comparison
circuit 540 measures the relative success of each processing
unit 524 in terms of a preselected criterion. For example, the
preselected criterion may be smallest mean squared the devia-
tion between actual and imputed values during the monitoring
time. The most successtul group of settings may be selected
for processing data during a next time period. This operation
may be described as convergent data fusion in that conver-
gence of actual and imputed values may be minimized.

The present embodiments provide for separate parallel
operation of calculation models. Consequently, adaptive pro-
cessing may be utilized for tasks that were previously con-
sidered to be intractable in real time on hardware of the type
used in low powered, portable processors. The option of
modular pipelined operation simplifies programming; design
and packaging, and allows for use of FPGAs in place of
high-powered processors. [.earned parameter usage, based on
assuming that the same estimation functions and learned
parameter values can be used to produce the estimates that in
turn, allow unexpected events to be detected more simply.
Field programmable windowed functionality can be applied
to many applications by programming the data matrix to be
selected by a “windowing” function. Auto-adaptive learning
memory may be distributed over pipelined processing mod-
ules.

The present subject matter being thus described, it will be
apparent that the same may be modified or varied in many
ways. Such modifications and variations are not to be
regarded as a departure from the spirit and scope of the
present subject matter, and all such modifications are
intended to be included within the scope of the following
claims.

The invention claimed is:
1. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:
generating a plurality of data cells for each time slice of a
succession of time slices;
defining a number of feature values for each data cell;
defining a number of forecasts for each feature value;
establishing a current time slice; and
for each forecast:
specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
further comprising specifying in relation to the current
time slice at least one or more past time slices.
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2. The method of claim 1, wherein the estimation set fur-
ther includes data cells in at least one past slice that corre-
spond with the nearest neighbor cells in the current time slice.

3. The method of claim 1, wherein at least one of the future
time slice and the at least one past time slice are noncontigu-
ous.

4. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:

generating a plurality of data cells for each time slice of a

succession of time slices;

defining a number of feature values for each data cell;

defining a number of forecasts for each feature value;

establishing a current time slice; and

for each forecast:

specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
further comprising storing each forecast value.

5. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:

generating a plurality of data cells for each time slice of a

succession of time slices;

defining a number of feature values for each data cell;

defining a number of forecasts for each feature value;

establishing a current time slice; and

for each forecast:

specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and

wherein the learned parameters include mean value sum of
squares cross product (MVSCP) matrix values and
MYVSCP inverse matrix values.

6. The method according to claim 5, wherein updating only
one MVSCP matrix is required per time slice.
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7. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:
generating a plurality of data cells for each time slice of a
succession of time slices;
defining a number of feature values for each data cell;
defining a number of forecasts for each feature value;
establishing a current time slice; and
for each forecast:
specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
wherein the learned parameters include MVSCP inverse
matrix values.
8. The method according to claim 7, wherein updating only
one MVSCP matrix inverse is required per time slice.
9. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:
generating a plurality of data cells for each time slice of a
succession of time slices;
defining a number of feature values for each data cell;
defining a number of forecasts for each feature value;
establishing a current time slice; and
for each forecast:
specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
wherein the learned parameters include covariance matrix
values.
10. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:
generating a plurality of data cells for each time slice of a
succession of time slices;
defining a number of feature values for each data cell;
defining a number of forecasts for each feature value;
establishing a current time slice; and
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for each forecast:
specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
wherein the learned parameters include covariance matrix
inverse values.
11. A method of forecasting feature values in future time
slices for a cell of a data array, comprising:
generating a plurality of data cells for each time slice of a
succession of time slices;
defining a number of feature values for each data cell;
defining a number of forecasts for each feature value;
establishing a current time slice; and
for each forecast:
specifying in relation to the current time slice a future
time slice for which the forecast is to be computed;
defining at least one dependent data cell in the future
time slice; and
for each dependent data cell:
defining an estimation set including a predetermined
number of nearest neighbor cells in the current time
slice surrounding in at least one spatial dimension a
data cell corresponding to the at least one depen-
dent data cell in the future time slice;
generating learned parameters for the estimation set
based on information stored in the cells of the esti-
mation set;
updating each learned parameter;
computing a forecasting weight corresponding to the
estimation set based on the learned parameters;
forecasting a feature value in the future time slice as a
function of the feature value associated with the estima-
tion set and its corresponding forecasting weight; and
wherein the learned parameters include mean squared
deviation values.
12. A method of generating an auto-adaptive function to
forecast feature values for a cell of a data array, comprising:
providing a plurality of stages, each stage for calculating
one or more component functions, including functions
to:
receive a plurality of data cells for each time slice of a
succession of time slices,
establish a current time slice in the succession,
define a future time slice,
specify a number of estimations for each feature value,
specify a dependent data cell in the future time slice for
which to forecast a feature value,
define an estimation set including a predetermined number
of nearest neighbor data cells in the current time slice
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surrounding in at least one spatial dimension a data cell
corresponding to the dependent data cell in the future
time slice,

forecast the feature value as a function of the window,

compare the forecast feature value to its actual value to
determine a magnitude of deviance;

selecting stages for feature value generation;

generating feature values using the selected stages; and

further comprising operating the selected stages consecu-
tively.

13. The method according to claim 12, further comprising

selecting an order in which the selected stages operate.

14. A method of generating an auto-adaptive function to

forecast feature values for a cell of a data array, comprising:

providing a plurality of stages, each stage for calculating
one or more component functions, including functions
to:

receive a plurality of data cells for each time slice of a
succession of time slices,

establish a current time slice in the succession,

define a future time slice,

specify a number of estimations for each feature value,

specify a dependent data cell in the future time slice for
which to forecast a feature value,

define an estimation set including a predetermined number
of nearest neighbor data cells in the current time slice
surrounding in at least one spatial dimension a data cell
corresponding to the dependent data cell in the future
time slice,

forecast the feature value as a function of the window,

compare the forecast feature value to its actual value to
determine a magnitude of deviance;

selecting stages for feature value generation;

generating feature values using the selected stages; and

further comprising specifying in relation to the current
time slice at least one past time slice, wherein the esti-
mation set further includes data cells in at least one past
slice that correspond with the nearest neighbor cells in
the current time slice.

15. A method of interpolating transmitted images, the

method comprising:

receiving a plurality of data cells for each time slice of a
succession of time slices,

wherein at least one feature value is associated with each
data cell;

defining a current time slice,

wherein the feature values associated with the plurality of
data cells for the current time slice characterize a first
image;

defining a dependent cell in a future time slice;

defining an estimation set including a predefined number
of nearest neighbor cells in the current slice surrounding
in at least one spatial dimension a data cell correspond-
ing to the dependent cell in the future time slice;

generating a set of learned parameters based on informa-
tion stored in the estimation set;

updating each learned parameter;

transmitting the learned parameters with every nth image;
and

wherein the estimation set includes the data cells in at least
one past time slice that correspond with the dependent
data cell in the future time slice and the nearest neighbor
cells in the current time slice.

16. A method of interpolating transmitted images, the

65 method comprising:

receiving a plurality of data cells for each time slice of a
succession of time slices,
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wherein at least one feature value is associated with each
data cell;

defining a current time slice,

wherein the feature values associated with the plurality of
data cells for the current time slice characterize a first
image;

defining a dependent cell in a future time slice;

defining an estimation set including a predefined number
of'nearest neighbor cells in the current slice surrounding
in at least one spatial dimension a data cell correspond-
ing to the dependent cell in the future time slice;

generating a set of learned parameters based on informa-
tion stored in the estimation set;

updating each learned parameter;

transmitting the learned parameters with every nth image;
and

further comprising applying the transmitted learned
parameters to interpolate between successive nth images
received at a receiving station.

17. A method of interpolating transmitted images, the

method comprising:

receiving a plurality of data cells for each time slice of a

succession of time slices,
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wherein at least one feature value is associated with each
data cell;

defining a current time slice,

wherein the feature values associated with the plurality of
data cells for the current time slice characterize a first
image;

defining a dependent cell in a future time slice;

defining an estimation set including a predefined number
of nearest neighbor cells in the current slice surrounding
in at least one spatial dimension a data cell correspond-
ing to the dependent cell in the future time slice;

generating a set of learned parameters based on informa-
tion stored in the estimation set;

updating each learned parameter;

transmitting the learned parameters with every nth image;
and

further comprising:

computing a forecasting weight based on a learned param-
eter; and

forecasting a feature value of the dependent data cell n
slices into in the future using the forecasting weight.
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