United States Patent

US008069132B2

(12) 10) Patent No.: US 8,069,132 B2
Jannarone et al. (45) Date of Patent: *Nov. 29, 2011
(54) EFFICIENT PROCESSING IN AN 5,966,178 A 10/1999 Tashima et al.
AUTO-ADAPTIVE NETWORK 6,928,398 B1* 82005 Fangetal.ccccooennnne 703/2
7,079,626 B2* 7/2006 Hartetal. ... 379/1.04
(75) Inventors: Robert John Jannarone, San Diego, 20067/6502794’;4211 ?1 451%882 g)arnunrirc(})ﬂ:nezta L’l.
CA (US); John Tyler Tatum, Atlanta, 2008/0097802 Al 4/2008 Ladde et al.
GA (US); Jennifer A. Gibson, Atlanta, 2008/0126274 Al 5/2008 Jannarone et al.
GA (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: Brainlike, Inc., Atlanta, GA (US) Ip 03-150916 A 6/1991
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days.)) o o)
“Methods for imputation of missing values in air quality data sets”,
Thi.s patent is subject to a terminal dis- H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, M.
claimer. Kolehmainen, Atmospheric Environment, vol. 38, Issue 18, Jun.
3k
(21) Appl. No.: 12/432,514 2004, pp. 2895-2907.
(Continued)
(22) Filed: Apr. 29, 2009
Primary Examiner — Jeftrey A Gaffin
(65) Prior Publication Data Assistant Examiner — Mai T Tran
US 2009/0259615 Al Oct. 15, 2009 (74) Attorney, Agent, or Firm — Stephen C. Beuerle;
Procopio Cory Hargreaves & Savitch LLP
Related U.S. Application Data
o L 57 ABSTRACT
(63) Continuation of application No. 11/484,874, filed on . Lo .
Jul. 10, 2006, now Pat. No. 7,529,721. Feature Valu.es, Whlch may be mult%-dlmenswnal, collected
over successive time slices, are efficiently processed for use,
(60) Provisional application No. 60/697,355, filed on Jul. 8, for example, in known adaptive learning functions and event
2005. detection. A Markov chain in a recursive function to calculate
imputed values for data points by use of a “nearest neighbor”
(51) Int. Cl. matrix. Only data for the time slices currently required to
GO6F 9/44 (2006.01) perform computations must be stored. Earlier data need not
(52) US.ClL .o 706/52; 706/14; 706/23 be retained. A data selector, referred to herein for convenience
(58) Field of Classification Search 706/52, as a window driver, selects successive cells of appropriate
706/14, 23 adjacent values in one or more dimensions to comprise an
See application file for complete search history. estimation set. The window driver effectively indexes tables
of data to efficiently deliver input data to the matrix. In one
(56) References Cited form, feature inputs are divided into subgroups for parallel,

U.S. PATENT DOCUMENTS
5,835,902 A * 11/1998 Jannarone 706/26

pipelined processing.

9 Claims, 25 Drawing Sheets

Processor u40

Input
Metrics 70 Clock |‘/72

Screener Screener Correlator
Feature Kernel Feature

Stage 44 Stage ~/45 Stage J4g Stage _/50 Stage 52 Stage 54 Metrics

Field-p ble window fi

Auto-adaptive learning memory:
Current time slice values:

Next time slice values:

Step 1 logic flow: —»

Step 2 data flow: ----- >

Correlator Stage bypass: ———»
Kernel Forecaster Output Output 60

Register

Alerts

Displays

UE

Imputed
Values

Forecast
Values

158
Statistics
160
Events

—
o
&Y

US 8,069,132 B2
Page 2

FOREIGN PATENT DOCUMENTS
JP 06-222809 A 8/1994

OTHER PUBLICATIONS

“Adaptive nearest neighbor search for relevance feedback in large
image databases”, P. Wu, B. S. Manjunath, International Multimedia
Conference; Proceedings of the ninth ACM international conference
on Multimedia, vol. 9, 2001, pp. 89-97.*

“Adaptive nearest neighbor search for relevance feedback in large
image databases”, P. Wu, B. S. Manjunath, Proceeding Multimedia
01 Proceedings of the ninth ACM International conf, Sep. 30-Oct. 5,
2001, pp. 89-97.*

International Search Report and Written Opinion for PCT/US06/
27006 issued May 8, 2007.

McBader et al., A Programmable Image Signal Processing Architec-
ture for Embedded Vision Systems, Proc. 14th IEEE International
Conference on Digital Signal Processing, DSP 2002, Jul. 3, 2002, pp.
1269-1272.

Sun, Motion Activity for Video Indexing, Ph.D. Thesis, University of
California, Santa Barbara, Jun. 2004, entire document, especially fig
5-1,p. 92.

International Search Report and Written Opinion for PCT/US2008/
064276 issued Dec. 18, 2008.

Gao et al., Evaluating Continuous Nearest Neighbor Queries for
Streaming Time Series via Pre-fetching, 2002, CIKM, Nov. 4-9, 2002
pp. 485-492.

U.S. Appl. No. 12/412,680, filed Mar. 27, 2009, Jannarrone et al.
European Search Report from EP 06786982.6 dated Apr. 14, 2010, 7
pages.

Ankur Jain, Edward Y. Chang, Yuang-Fang Wang: “Adaptive Stream
Resource Management Using Kalman Filters” SIGMOD 2004, Jun.
18, 2004, 12 pages.

Eiman Elnahrawy et al.: “Context-Aware Sensors”, Jan. 14, 2004, 17
pages.

Andrew Kachites McCallum: “Reinforcement Learning with Selec-
tive Perception and Hidden State”, Dec. 31, 1996, 156 pages.

* cited by examiner

U.S. Patent Nov. 29, 2011 Sheet 1 of 25 US 8,069,132 B2

1

U.S. Patent Nov. 29, 2011 Sheet 2 of 25 US 8,069,132 B2

Sensor
Array

L

Transmitter Processing Unit

l .
\20 \24 22/

Fig. 2

US 8,069,132 B2

Sheet 3 of 25

Nov. 29, 2011

U.S. Patent

€3
A Rttt aaubb ittty skl Attt it Sl st et i P e ity At -ty
sjery (¥ Y Y y mw%ﬁ wvm%‘u mmgu
Wi | | Tojynd _ layng ;
sonsnelg ¥ m ; m " m o
851 m | m : : : 1.
sonfep || ¢ m | m : : |
yseoasog I m ; m +_ DAHERNEAR -AHE
961~ m . . " 1 21307 . Anvomwoq _ 1 13071 " " vN\L
sonep || o " " m 001 m 06~ 08~ |
pamduyy [T = | ! : | | T | : mHE
I | = s—-_ - i - | |
skeidsiq [4-Y « " _
T~ | : : : m : :
suoy 4-¥ 1918139y 1918139y 1918139y 195139y 1218139y 198139y m
0ST — :
\ SOLIDN vm\) a3w1g Nm\) a3mg Om\) a3e1g wv\l a8e1g ov\J aBeig b a8uig m
g9 ndinQ mdingo I19)SBO9I0,] [ouIay amied,| IELAEYS aImyesy .
«——— :sseddq o8eig I0)R[3110)) 1018[2110)) 15U9210G BUDRNg |
«----- :moj eyep g doig i
<+—— :mop2130] [daig _
WZZZZZ0 S3N[EA O[S W) IXaN - SO
XY :san[ea 201fs awm juaLny 0v" | 105592014 L 101D 0L Jndu
i
AR

:K1owswr urures| aandepe-ony
:suonouny mopuim d[qeuruerdord-paig

U.S. Patent Nov. 29, 2011 Sheet 4 of 25 US 8,069,132 B2

C. Calling program
| 200
Start W, 202
A
C.1. Load API configuration values | 204
4
C.2. Allocate API metrics memory 206
L/
2y
'y >
4
C.3. (optionally) Initialize API/ reset config » 210
4
C.4. Load API with input metrics 212
W 208 | |
C.5. Call processing unit executive routine | 214
A
C.6. Process output metrics
utp | 216
4
A
C.7. (optionally) Save configuration values | 218
) 4
Stop 220
C.8. Utility library L 224

Fig. 4

U.S. Patent Nov. 29, 2011 Sheet 5 of 25 US 8,069,132 B2

B. Processing unit executive routine

L 240
Begin \/ 242

y

B.1. (optionally) Initialize API/ reset config » 244
y

B.2. (optionally) Organize parallel processing w 246
A

B.3. Call processing unit(s) - 248

A 4

B.4. (optionally) Collect parallel outputs into API 250

y

B.5. (optionally) Free parallel pipes 252
y
B.6. (optionally) Save core » 254
v
Return | 256

Fig. 5

U.S. Patent Nov. 29, 2011 Sheet 6 of 25 US 8,069,132 B2

B. Processing unit executive routine

| 240
y
B.3. Processing unit subroutine
270
L/ v
B.3.1. Screener feature processor
p | 272
B.3.2. Screener kernel | 274
A
B.3.3. Correlator feature processor | 276
A 4
B.3.4. Correlator kernel w 278
A 4
B.3.5. Forecaster - 280
A
B.3.6. Output Processor) 28&
B.3.7. Utility library 284
A 4
v

Fig. 6

U.S. Patent Nov. 29, 2011 Sheet 7 of 25 US 8,069,132 B2

B.3. Processing unit executive routine

272

B.3.2. Screener kernel

| 274
—— 290
B.3.2.1. Update learning weights J
3 292
B.3.2.2. Estimate deviance values J
Y 294
B.3.2.3. Set output plausibility values j
3 296
B.3.2.4. Update auto-adaptive learning memory)
Y 298
B.3.2.5. Update downstream registers J
y
v

Fig. 7

U.S. Patent Nov. 29, 2011 Sheet 8 of 25 US 8,069,132 B2

B.3. Processing unit executive routine

- 272
B.3.4. Correlator kernel
278 - 310
/ B.3.4.1. Compute imputing weights
, — 312
B.3.4.2. Estimate deviance values
) 314
B.3.4.3. Set output plausibility values
4 316
B.3.4.4. Update learning J
‘ 318
B.3.4.5. Update auto-adaptive learning memory
: . 320
B.3.4.6. Update downstream registers /
A 4
v

Fig. 8

U.S. Patent

Nov. 29, 2011 Sheet 9 of 25 US 8,069,132 B2
B.3. Processing unit executive routine
272 .
A 4
B.3.6. Output processor
282
J 330
B.3.6.1. Alert processor
B.3.6.2. Displ ' 32
.3.6.2. Display processor —/
Y 334
B.3.6.3. Global imputer —/
B364. F t ‘ 336
.3.6.4. Forccaster /
Y 338
B.3.6.5. Statistical report processor J
\ 340
B.3.6.6. (Computing) event logger j
A
v

Fig. 9

US 8,069,132 B2

Sheet 10 of 25

Nov. 29, 2011

U.S. Patent

01 819

8¢

A

IdV ol synsa1 [a[eted 393(j0D) v

0s¢

A

vmm\/

-

SHuUN” U # jrun
Suissaooid uny "¢'g \

¢ #1uUn
Buissasord uny ‘¢'g

A

u-zL¢ -

[-U-ZLT

A

P

¢ #1un
3urssasord uny ‘¢'g

A

[#3un
Buissaocold uny "¢'g

TLe

A

[-CLC

b

ese

A

s1adddey 01 sanjeA [V 2mquysip :aziwedi(‘z'g

9rc

g

0S€ «

-

1) 24

aUNNOI 9ANNIAXI J1un Juissadold ‘g

US 8,069,132 B2

Sheet 11 of 25

Nov. 29, 2011

U.S. Patent

NSO~ ONDO *& ¢ o

-—

:321[s
awn
induy

11319

[] [] ® [[] ® ® []

L [] [] [] ® [] ® [J

L] [] [[] [] L] L] ®

€ ¥ g 9 L 8 6 oL

c € 14 S 9 L 8 6

| Z € 14 S 9 L 8

3 Z £ 1% S 9)

I I € 14 G 9

} I € 1 S

} c € 14

b 4 £

I [

I
jndu aols awi} adl|s 9dI|S A} 32IIS AW} 32IS AW} TS 3w} 3di|sS awl}
adlIs awn jsedaqo) awny yndul (indino (indino (Indinoz (indjnoz (indino z
Jossasoud ndino .3)sesaso) z dojs pue) ¢ days dajs pue) dajs pue) dajs pue)

ndjno Z dojs yndu 292)is pue) ndul indui indui ndur sadddey
19)se22.10} 3w} [ausdy 9IS dWI} JJNS 2w} aInjead} abejs
10}e|2.010D ainjea} Jouldy J3udalios induj
10)B[94400 13Ud3IIS

U.S. Patent

Nov. 29, 2011

272

Processor

Sheet 12 of 25

US 8,069,132 B2

272

272

Processor

Processor

272

272

Y

Processor

Processor

272

272

Processor

Processor

272

272

Processor

Processor

272

Processor

272

Processor

272

Processor

A\ 4

U.S. Patent Nov. 29, 2011 Sheet 13 of 25 US 8,069,132 B2

Features vs. Time with No Space Dimensions (only one window):

DEPENDENT CELLS:[D_]

INDEPENDENT CELLS:[| |

FRAME CELLS:[F_]

Input features per cell, n_features_in_per_cell: 8

Window time slices, n_window_time_slices: 3
Model space slices, n_mode!_space_slices: 1 1 1
Window space slices, n_window_space_slices: 1 1 1

Frame size: 0 0
Feature Slices:

0 1 2 3 4 5 6 7
Now-2| I 1 I I I 1 I I
Time Slices: Now-1| I 1 | 1 I | I I
Now| D D D D D D D D

Fig. 13

US 8,069,132 B2

Sheet 14 of 25

Nov. 29, 2011

U.S. Patent

1 314
| a | | a 4 |MON
i I I | l d |JL-MON ‘S90S dwi L
| I | | I d |Z-MON

L ol L 9 S 14 € Z I 0 d
1$99)|8 | uoisuawiqg

0 0 | :9ZIS awedd
L L € :S921|s 92eds mopuim u ‘sadl|s adeds MOpPUIM
1 i 1L :sa9dls ooeds |apow U ‘sddls aseds |apoN

€ 1S9J1|S oW} MOPUIM U ‘S3II|S dWI} MOPUIM

| 199 Jad Ul saunjeaj u ‘|99 Jad sainjeaj Jndu)

[:S 17130 MOANIM LSV [3]:s1130 3nWvad

[]'s1130 moanim 31aaiw [1]:s1130 IN3aNad3aN

[1:s1130 MOGNIM LSHIS [a@]'s1132 IN3aN3d3a

12w "SA uolisuawiq aosedg aup

US 8,069,132 B2

Sheet 15 of 25

Nov. 29, 2011

U.S. Patent

G134
IERrRNe - 4 4 4 4 4 E 4 d 4 4 3 4 4
[| @ L 0] I I I 4 Z
I I a I] I 4 ¢!
4 I I I I a 3 0
3 3 4 4 4 3 4 4 4 4 4 4 4 4 3 4 d
4 ¢l lL 0k 6 8] 9 S v 5 Z | 0 4
.$9JI|S ¢ uolsuawig
0 L l .9ZIS aweld
I I € :s02i|s e2eds MOpuIM™U ‘sadlls aoeds mopuip
i ! € :sadl|s @okds j9powu ‘saojs adeds [9po
| :SOJIjS oW} MOPUIM U ‘S321|S aWii} MOPUIM
| @9 Jad ul saunjeay u ‘|19 Jad saunjeay ynduj
[:S 1730 MOANIM LSV [4]:'s1130 anwvud
[]:s1130 mOaNIm 31aaIn [1_]'s1130 L1N3aN3d3aNI
[]'s1130 mOaNIm 1S [[@ }:'s1=0 LN3aNad3a

suojsuawig asedg omy

US 8,069,132 B2

Sheet 16 of 25

Nov. 29, 2011

U.S. Patent

zJo 1 1edoy Sy

[]'s1130 MOGNIM F10QIN

[]'S7130 MOAONIM 1SHI4

EaraaEn - 4 4 F] 4 4 4 4 4 4 4 4 4
(4 L 0 0 | 4 4
(g L0 0 | 4 9
(g L 0 10 | I I I 4 S
(g L0 I 0] I I I 3 14
4 | | | d € saols | "wg
4 | | | | | d A
4 | | } i | d {
d | | d 0
E] | | 4 4
E) d 4 d 4 4 4 E) E] 4 d 4 4 E| E] 4
d el zl L ol 8 . 9 S 14 € Z b 0 E|
$$92IIS ¢ "wa
: 9IS 8w (Z-)) Z-MoN
0 L Z Pz1s awelg
L e G :Sa2l|s” 9oeds Mopuim U ‘Sadl|s aoeds MOPUIp
L ' . :S99yjs eoeds” |9pow U ‘sadiis adeds |9pOI
€ :S@DJ||S” 9W)} MOPUIM U ‘S3DI|S dWI)} MOPUIM
I 99 Jad ul sainjeay u ‘|199 Jad sainjed; Jnduyj
[EER] :S17130 MOANIM LSV [4]:s1130 3nwvud

[1_]'s1130 INJaN3d3aNI

[@]:s7130 IN3aN3d3a

18w ‘SA suoisuawiq adedg omj

US 8,069,132 B2

Sheet 17 of 25

Nov. 29, 2011

U.S. Patent

zJozwed 91 314

d d d d d d d d d d d d

d

4

I 1 1 d

| [1 d

| a I 4

| | 1 | | d

| | | | | d

I a d

| I |

d d d E| d d d d d d d d

(2 o} 8 L 9 S 14 € 4 } 0] E|

E] d 4 d d d E d E] d d d

d

E]

| | I d

| | l d

d | | | d
d | | | | | d
E| | | | | | d
d ! 1 d
d | I d
d d d d d d d d d d d d d d d
d €l 4 L ol 8 L 9 S 14 € [2 0 d

9
S
4
£ S80S | 'wig
4
I
0
d
d
S30N§ ¢ 'wig

:921|s awiy (0) MON

d
d
9
G
4
€ S90S | 'wIg
4
I
0
d
d
$9S 2 'wiag

:9011s 3w (1-1) L—MON

gJojed/] Big

US 8,069,132 B2

Sheet 18 of 25

Nov. 29, 2011

U.S. Patent

d d 4 d 4 d d d F] 4 d d F] d F] d 4
4 4 d d d d 4 4 F] 4 E| 4 3 d 4 d 4
F 4 F] Fi Fi 4 4 4 4 d 4 4 Fi 4 4 d e]
d d d 4 4 d d E| d d d d d 4 d E] S
E 4 E| F| d d d E 4 E] d F] 4 d 4 F 14
E| 4 d 4 F] d] 4 4 F] 4 F 4 4] d € s30S L wIg
4 d 4 d d 4 d d 4 4 d 4 4 El d d 14
d d E d 4 E] d d d d d E] 4 d 4 4 l
F| 4 4 4 Fi d d 4 d d d 4 d E| d F] 0
4 4 E 4 4 d 4 4 4 4 4 d 4 F| 4 4 E] e
d d d d 4 4 4 4 E]] d E] 4 E] 4 d |
4 €l 4} L 0l 6 8 L 9 G 14 € 4 b 0 E]
89015 ¢ 'wig
(Aweiq) - aos € "wig
‘MOGQNIM 1SYId
L L ¢ .9zIs aweid
€ G :S331|s adseds”mopuim u ‘sadljs aoseds Mopuip
) . :s99)|s aoeds |apowl U ‘sadi|s adeds |apON
€ :S39DI|ST dWI} MOPUIM U ‘S9dI|S aWl} MOPUIA
L :|§99 1ad ui sainjeaj u ‘|jad 1ad sainjead; induj
[} s 17130 MOANIM LSV [[3]:s1130 anva

[J's1130 IN3GN3d3aNI

[]:'s1130 moaNIm 18314 [a_]'s1130 IN3AN3d3a

:suojsuawiq asedg sauyy

U.S. Patent Nov. 29, 2011 Sheet 19 of 25 US 8,069,132 B2

(T8 [T [T [T [V 798 [T /TR [T [T /T [T (T [T [T [TV [T [T [T [T [T /TR [T [TR
o
el TR TS wiw Ol | ww
M wiu Nu fw wiw
Ay [TH T8 wju h{ | TR [T TN T8
=4 T[T wjw Olu ju W fu
o|w | " [T olu|u ww
o |w|w w ofw |u ww
TR TS i S [T TR TR [TR
©fw|u MRS ©|w|u wlw| »n
G
5]
™
wlw |u wfw w|w|u TR [TR 5
=%
~
<+ ww < fu fw TR TS —
8
» -
F—
ofw Tl [T ofw TR [TR
o T[T o W |w
|l] —]—]—- W Al L) VO B P E W
olw|wial—|— My [T8 olw|uw|—|=|— ww
(Y [T [T [T [T [T [PO (T T [T [T (TR (1O [T [T [T T8 [T [T [T [P [T (T8
Y LbrLoramesvnownw ® LuLo-ramocTwLOLL
7] n
. m .
(DD w Q)D a
Q - Q2 A
©w =) : @ 5 2
© E] £
. 0 . (a]
E £
(o] (]

U.S. Patent Nov. 29, 2011 Sheet 20 of 25 US 8,069,132 B2

o e e b o foe e o ju fu fu L o foe e f e o o o fu fu fu

pid (MR TS TH[TH aid (TR T TR [TH

I [TR TS (TR [TH N ju TR T8

had [T /T wiw Tl u TR [TH

=] [TR T8 ww Ofw ju TR [T

ofwuw L w ol u ww

oo |u wlw oofw |u. wlw

~wjwe] [=[=]=l=|—] |u|u ~fw| f=l=]=]——] |uw|w

olw|lw} |=|—=|—=]—=|—-1 [w|uw ow|u| |[=[=la]l=|=] |wjw] wn
Gt
%)
o

wlw|w| |=|=|=]—=|—] |wju wlw|w| |=|=|=|—|—] |uw|u =
=3
~

L [TRITS TRITH <[|u T [TR -
&b
—
€5

oo [| T [T oluwfu wilu

o e fu TR [T o fw L w

— || wiw — [| (TR [T

ofuw|u L fw ofw u TR TS

e o foe o o o e o fu o o fu (TS [T [T [T [T [T [T [THR (T [T VY [T

Y LuroraosTvoLn Y LuLoraumTvLOoOULLL

n 7))

N N

£ £

(= (@]

Dim. 1 Slices:

MIDDLE WINDOW:
Dim. 3 slice 4:
d
Dim. 3 slice 5:
Dim. 1 Slices:

U.S. Patent Nov. 29, 2011 Sheet 21 of 25 US 8,069,132 B2

1 i e e s o e e e e ju mumuuuua%aag
Olu | wju (TR [Ty [T HHH!B
L
o e
] [THTS PR [T 0] {1 [T —%=u.m
had | T [T ww N ju ww
Oluw|u W fu hauf (TR [T Ty [TR
ofu|w TR = [TH TS T[T
o | |uw TR TR o(w |u THT.
~uluwl [=f=[=l—|—] [|u|u oo ju (TRTH
olujw| |[=[=]=|—|—] |u|u ~|wfu (TR [T VN
S
°
v
wlwlw| |=|—|—-|-|—] jujw olu|u MR TS =
o
~
<[ju L ju wlw ju TS [T I
.20
F
ofw | w|w < u | W
o TR T8 o fw | wiu
- lufu wjw mie e fu
olu|u ww — wiw
(T [T [VO [T [THY [T [T (IR |TOG)T [T [V (T8 [T [V [T [T [T [T FTY VO (T9 [T [TR
 LuLoraomasnwownuw Y LuLuoraum<twvwowLL
7] n
N N
E E
a o

Dim. 1 Slices:
Dim. 1 Slices:

Dim. 3 slice 6:

f
LAST WINDOW:
Dim. 3 slice 9

g

U.S. Patent Nov. 29, 2011 Sheet 22 of 25 US 8,069,132 B2

(TR [TH [T [T (TR [T [TH @
[32]
e [T [T [Ty [T [T | TR @
N o e o | fu %
h [TH (TS (T8 T8 T e o e o e e e o e e
=[RS (T [TH Ofw e e o o o fus o fu
olu|uw (T8 [T o e o e i e e o e s o fu
ofu fw (THITH oo Ju fu o o e fo o o fu fu
~w fw (TR T8 (TR [THY [P [TSR [T [T8 | TR (TR [T [THY [T
ofwiu TR Ot e o e [| fon o o o o v
G
©
')
Y [TRITS THITR ToY (TR TR [T TR [T [TR} [T [TRR [T [TR [T g
Q.
~
< || W . bl (TS (19 [T { VS [THY (T3 [T TG TN | TR {1 -
=)
—
o
o fwiu W 2] [T [T [T [TH) [T [T [T (VIR (VY | TR [T
o (T [TH] [TH TR T8 TR [TR [TR))T [TR T (TR [T
e (MR [T Ao P [T [T [T |78 [T} [T (TR [T [TR [T
ofw|w 1o T8 =] (TS [T [T 7Y [T [TR | 7Y (VIR (Y T [T
e e e o o o o o o o ue [T [T (79 [T [T [V [TY [T [T /T4 [TR [T
 Luworamcsvownw 0E>8 LLOrNOMTWOWIL
n &N
S E ke TE g
o— = ~— = =4
o O) o O 7
v’ : d 7) o .
™ £ © E
. (] . O
£ £
(@] (a]

U.S. Patent Nov. 29, 2011 Sheet 23 of 25 US 8,069,132 B2

/ 30 Processing
‘ Unit
Sensor Array 440
e \ 424
Sensor
Control API
Process I \ 430
. —
Simulator
Telemetry \ 436
2% Control
~F 450
‘—

Transmitter

Fig. 18

U.S. Patent Nov. 29, 2011 Sheet 24 of 25 US 8,069,132 B2

Attorney Docket No. 115463-001CTH1 Apglication No. 12/432,514

Replacement Drawing Sheet

OUTPUT
" DATA

U.S. Patent Nov. 29, 2011 Sheet 25 of 25 US 8,069,132 B2

/ 424-1 424-2 e e K 424-n
Processing Processing Processing
Unit Unit cec Unit / 430
L .
: Comparison
Unit

Fig. 20

US 8,069,132 B2

1
EFFICIENT PROCESSING IN AN
AUTO-ADAPTIVE NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation of U.S. patent
application Ser. No. 11/484,874, filed Jul. 10, 2006, which
claims the benefit of provisional patent application No.
60/697,355 filed on Jul. 8, 2005. All of these applications are
incorporated by reference herein as though set forth in full.

FIELD OF THE INVENTION

The present subject matter relates generally to machine
learning and more specifically to efficient processing of
parameter values, which may be multidimensional, for use in
calculating, predicting and imputing values for a range of
applications providing’ auto-adaptive functions.

BACKGROUND OF THE INVENTION

Auto-adaptive systems have many applications. These
applications include event recognition based on data mea-
sured over a number of successive time periods. Events take
many different forms. For example, events may include
detection of a target in a particular area, sensing of an out-of
specification condition in a physical process environment or
correspondence of processed psychometric measurements
with a particular behavior prediction profile. Anomaly sens-
ing is often an element of detecting an event. Event recogni-
tion may also comprise evaluation of sensed data to recognize
or reject existence of conditions indicated by the data or to
initiate a particular action.

One use of event detection is in military operations. When
making critical combat decisions, a commander must often
decide to either act at once or hold off and get more informa-
tion. Immediate action may offer tactical advantages and
improve success prospects, but it could also lead to heavy
losses. Getting more data may improve situational awareness
and avoid heavy losses, but resulting delays may cause other
problems. Making the right choice depends strongly on
knowing how much could be gained from gathering more
information, and how much could be lost by delaying action.
Advantages that can be achieved through the use of event
detection go beyond mere friend or foe identification. A data-
based, decisive inference process can help the commander to
see how the operational picture might change with the arrival
of more data. Seeing what to expect, in turn, will help decide
if getting more information is worthwhile or whether an
action should be launched at once.

Data is collected by sensors of one kind or another. In the
context of the present description, a sensor is an item that
provides information that may be used to produce a meaning-
ful result. Data is collected over successive time periods,
generally from an array of sensors. Depending on the condi-
tions being analyzed and the type of sensors utilized, different
types of data points may be established. For example, a data
point characterizing a position of a point in a plane may be
characterized by x and y coordinates. Such a point has two
spatial dimensions. Other dimensions may also exist. For
example, if the data point describes the condition of a pixel in
a television display, the data point may be further character-
ized by values of luminance and chroma. These values are
characterized as further dimensions of a data point.

In order to describe an environment mathematically, event
recognition adaptive algorithms process successive signals in

20

25

30

35

40

45

50

55

60

65

2

one or a plurality of dimensions to converge on a model of the
background environment to maintain track of the back-
ground’s dynamic change. Systems employing such algo-
rithms are referred to as machine learning in that they are
capable of learning. When an event occurs within a sensor’s
area of response, e.g., within a field of view of optical sensors,
the adaptive algorithms determine if the return is sufficiently
different from the background prediction. Domain specific
event identification algorithms may then be applied to verify
if an event has occurred in order to minimize the likelihood
and number of false positives. An important aspect of the
adaptive algorithm approach is a dynamic detection threshold
that could enable these systems to find signals and events that
could be lost in noise were they to be compared to fixed
thresholds. Having a dynamic threshold also allows a system
to maintain a tighter range on alarm limits. Broader alarm
ranges decrease the ability of the system to distinguish
anomalous conditions from normal conditions. Machine
learning is also * readily embodied in parallel configurations
to allow for extra speed afforded by parallel processing.

U.S. Pat. No. 5,835,902 discloses a system for learning
from and responding to regularly arriving information at once
by quickly combining prior information with concurrent trial
information to produce useful learned information. Predicted
values are generated, and an anomaly is indicated if a current
measurement is sufficiently divergent from an expected mea-
surement. In one form, a processing system for computing
output values from input values received during a time trial
comprises a processing unit receiving sequential input data
values from an input vector. In order to generate the estimated
values, a connection weight matrix is calculated that is the
inverse of a sample covariance matrix at the beginning of the
time period and the inverse of the updated sample covariance
matrix at the end of the time period. While this system is
effective, it has physical limitations.

To use such a system for nominal video image of 500,000
pixels, the matrix to be computed would have a size of 500,
000x500,000. This is too large a number to be processed in
real time by stand-alone processor circuits that are capable of
inclusion on a circuit board in a remotely controlled device.
Even as to tractable applications, the processor has significant
minimum requirements in terms of complexity, required sili-
con “real estate” and operating power. Such requirements are
relatively easily met when a processor is contained in a base
unit such as a ship. However, tactically, there are scenarios in
which it is highly desirable to use a portable device such as an
unmanned underwater vehicle (UUV) to gather information
and make decisions. Such devices have such limited, self
powered electrical power sources that power demand
becomes a critical factor. Weight and space limitations are
significant in many forms of portable devices. It is desirable to
provide a system better suited to operation in a remote, space
limited and self powered unit.

U.S. Pat. No. 6,327,677 discloses a processor to generate
values to which current values are compared. However the
processor uses historical samples for comparison to currently
measured values continuously on a time slice by time slice
basis.

Other complex event detection systems have known draw-
backs. A complex process requires powerful processors
rather than simpler, less expensive field programmable gating
arrays (FPGAs). FPGAs have not been used for processing of
multidimensional measurements. Many systems use C++
programming, which is effective but slow in comparison to
the simple instructions used for FPGAs. It is desirable to
provide a processor arrangement for event detection which is
simple, efficient in terms of power requirements, fast and

US 8,069,132 B2

3

comparatively low cost in relation to prior powerful event
detection systems. It is useful to provide the capability of
parallel processing in order to speed production of results.

However, as new unmanned vehicles are being developed
that are smaller, more agile, and have the capability of reach-
ing places that have not been reached before, the demands
made upon the data processing capabilities of these systems
have increased dramatically. An article in COTS Joumal,
January 2006, http://www.cotsjournalalonline.com/home/ar-
ticle.php?id=100450, noted that, “The military’s transforma-
tion into a more nimble and information aware fighting force
means that high-demand, ¢ compute-intensive military sys-
tems need huge amounts of processing power in a small
space. Multicore processors are leading the way. . . . On the
silicon side, the move to multicore processors is being driven
by the limitations of single-core PUs in these high demand
systems. Unmanned aerial vehicle (UAV) image recognition
and collision detection processing, for example, requires
many DSPs or general—purpose processors, or a combina-
tion of both. Pushing single-core processors any further in
performance can’t be done without drastic consequences in
the heat produced and the power consumed.”

Single core processors include such devices as high-pow-
ered AMD and Intel processors. Dual core processors repre-
sent new and more expensive designs for which the new
architectures and programming need to be created. An
example of a dual core processor is the new Intel Pentium D
dual core processor. If designs can be found that can utilize
older and simpler processors to perform functions such as
those performed by UAVs, much redesign and power con-
sumption can be avoided. Low level software can be utilized.
Reliability will be increased and time to deployment from
formulation of specifications is significantly decreased.

It is also important to formulate efficient ways of handling
large arrays of data. In many typical applications, the UAV-
borne processor will need to respond to outputs from a large
array of sensors. The sensors will be producing consecutive
outputs at a high frequency. The above-cited U.S. Pat. No.
5,835,902 successfully processes data. However, values are
updated by processing the inverse of a covariance matrix.
This is a complex calculation, especially when the number of
covariates is large.

In order to evaluate data, it is important to provide efficient
ways of presenting data to a processor. U.S. Pat. No. 6,985,
779 discloses a system in which sensor output data is orga-
nized within a spreadsheet in which one column represents an
output of one sensor and in which each role of the columns
represents the output during a successive frequency period, or
time slice. This patent does not disclose efficiently processing
the values in a matrix to define imputed values.

Many prior art arrangements perform calculations for
event detection and adaptive learning after entire sets of data
have been collected. Often data collected by a remote vehicle
must be processed at a home base. Prior arrangements have
not provided for maximizing data reduction in the remote
vehicle.

SUMMARY OF THE INVENTION

Briefly stated, in accordance with embodiments of the
present invention, efficient processing of feature values,
which may be multi-dimensional, collected over successive
time slices, is provided. Processing results are used, for
example, in known functions for calculating, predicting and
imputing values, updating learned functions, assigning plau-
sibility to measurements, discerning deviance between mea-
sured and expected values and event detection. A spatially

20

25

30

35

40

45

50

55

60

65

4

stationary Markov chain model is used for inferring expected
values, preferably by calculating imputed values for data
points by use of a “nearest neighbor” matrix. A recursive
function is used to generate imputed values. The recursive
function utilizes values obtained or calculated during previ-
ous time slices. Only data for the time slices currently
required to perform computations must be stored. Earlier data
need not be retained. During a current time slice, a data
selector, referred to herein for convenience as a window
driver, selects appropriate adjacent locations in at least one
dimension to a dependent data location whose value is to be
imputed The set of locations is an estimation set. The window
driver effectively indexes through data to select estimation
sets for successive dependent data points. Sets of locations
corresponding to locations in each estimation set are also
selected for each of a number of previous time slices. An
imputed value is generated for the dependent data point in
accordance with an estimation function based on the values in
the selected sets. pin In typical applications, many inputs will
be provided in each time slice. In one instance, 512 numbers
may be provided. One or more functions of each number may
be generated for further processing. In one form, the inputs
are divided into subgroups, e.g., 512 inputs may be divided
into eight subgroups of 64 inputs. Each subgroup is processed
respectively in one of a plurality off parallel, pipelined logic
units. Division of processing tasks into subgroups facilitates
use of relatively simple processing hardware in each parallel
unit, such as a field programmable gating array rather than a
full-fledged processor. The modules are field programmable
to allow for flexibility in selection of data to be processed and
algorithms to be utilized and to provide for the ability to
simulate software programming of selected routines.

BRIEF DESCRIPTION OF THE DRAWINGS

The present subject matter may be further understood by
reference to the following description taken in connection
with the following drawings.

FIG. 1 is an illustration of a UAV employing an embodi-
ment of the present invention gathering data and transmitting
intelligence to a command and control station;

FIG. 2 is a block diagram of a system incorporating an
embodiment of the present invention;

FIG. 3 is a block diagram of one form of processing unit
included in the embodiment of FIG. 2;

FIGS. 4 through 9 are each a flow diagram illustrating a
performance of modular statistical routines within the pro-
cessing unit;

FIG. 10 is a flowchart illustrating parallel processing of
generated values;

FIG. 11 is a chart illustrating values from various time
slices during a current selected time slice t0;

FIG. 12 is a block diagram of a parallel processor perform-
ing the routines of FIG. 10;

FIGS. 13-17 are each a chart useful in illustrating selection
of members of sets of data, called estimation sets, to be used
in successive calculations of a recursive function

FIG. 18 is a block diagram of a processing unit interacting
with an application program interface and sensors;

FIG. 19, consisting of FIG. 194 and FIG. 195 represents a
nominal set of input information from a video camera and
processed data from which clutter has been removed; and

FIG. 20 is a block diagram illustrating a system utilizing a
plurality of processing units, each having a different configu-
ration.

DETAILED DESCRIPTION

Embodiments of the present invention provide for opera-
tion referred to as adaptive processing. Auto-adaptive pro-

US 8,069,132 B2

5

cessing is not a recognized term of art, but is descriptive of
processing of data, often condition-responsive data received
from an array of sensors received in successive time slices, in
order to update adaptive functions and to calculate imputed
values of data for use in evaluating data and which may also
be used to predict data. Time slices may also be referred to by
such terms as clock periods, time trials or data cycles. For
each time slice, measurement values and measurement plau-
sibility values are supplied to the system, and a learning
weight is either supplied to or generated by the system.

Auto-adaptive processing operations may include convert-
ing measurement values to feature values; converting mea-
surement plausibility values to feature viability values; using
each viability value to determine missing value status of each
feature value; using non-missing feature values to update
parameter learning; imputing each missing feature value
from non-missing feature values and/or prior learning; con-
verting imputed feature values to output imputed measure-
ment values; and supplying a variety of feature value and
feature function monitoring and interpretation statistics.

The above functions are used by applying mathematical
functions to selected data entries in a data array. Embodi-
ments of the present invention utilize a “windowing” function
in order to “index” through the data array to select successive
groups of data entries for processing. Field programmable
windowed functionality can be applied to many applications
by programming the data entries to be utilized for a calcula-
tion and to set parameters of algorithms.

Embodiments of the present invention in one form provide
for the option of embodying an auto-adaptive processor in the
form of parallel, pipelined adaptive feature processor mod-
ules perform operations concurrently. Tasks including, func-
tion monitoring, interpretation and refinement operations are
done in parallel. Distribution of tasks into modules permits
the use of simplified hardware such as field programmable
gating arrays (FPGAs), as opposed to full processors in vari-
ous stages. Auto-adaptive processing may be utilized for
tasks that were previously considered to be intractable in real
time on hardware of the type used in low powered, portable
processors. The option of modular pipelined operation sim-
plifies programming; design and packaging and allows for
use of FPGAs in place of high-powered processors. Spatially
stationary learned parameter usage, based on assuming that
within any window the same estimation functions and learned
parameter values, can be used to produce the estimates that in
turn allow unexpected events to be detected more efficiently.

Embodiments of the present invention may be used in a
very wide variety of applications. These applications include
monitoring system performance to prevent breakdowns, dis-
ease surveillance and control, military attack prevention,
measuring efficacy of antibiotics, detecting unanticipated
computer network activity and equipment condition monitor-
ing. Event recognition may be used to trigger an alarm and
initiate a response or produce a wide variety of other reactive
or proactive responses. In one application, usability of data is
evaluated so that a remote device may decide whether or not
to utilize its limited power and bandwidth to transmit data,
and substantial data compression is achieved by transmitting
only locations of pixels where and when anomalies have been
detected

One of the many applications for systems including an
embodiment of the present invention is illustrated in FIG. 1.
In this illustration, a UAV 1 is part of an intelligence system.
The UAV 1 comprises an array of sensors, processors and a
transmitter, further described and illustrated below. The UAV
1 provides video information via a radio frequency link 3to a
command and control station 4. In the present illustration, the

20

25

30

35

40

45

50

55

60

65

6

command and control station 4 is housed in a ship 5. The ship
5 is traveling in an ocean 6. The UAV 1 may detect enemy
craft 8. The enemy craft 8 may be beyond a horizon 10 of the
ship 5. The transmitter within the UAV 1 must have sufficient
bandwidth to provide detected video information to the com-
mand and control station 4. Data processing equipment and
transmitter modulation circuitry must have sufficient capacity
to transmit video information. Ideally, all video information
provided from the UAV 1 to the base station 4 will be useful.
To the extent that the base station 4 will be receiving non-
useful information, the base station 4 will have to expend
resources to call the non-useful information. Processing of
non-useful information at the base station 4 will also slow the
response to useful information.

Ambient conditions will have a tendency to obscure the
view of the enemy craft 8 from the UAV 1. Moisture in the air
is a common ambient condition. Very often, moisture in the
air will not be sufficient to block obtaining a useful image.
Optical filtering may also be used to reduce haze. However,
clouds or rainstorms may be located between the enemy craft
8 and the UAV 1. The video data obtained when the enemy
craft 8 are not viewable is referred to in the present description
as non-useful information. Commonly, UAVs simply collect
data and transmit the data to a command and control station.
The UAV 1 must be provided with sufficient resources to
transmit non-useful information. In accordance with embodi-
ments of the present invention, data processing is done to
determine whether information will be useful or not. One
criterion that need be utilized to determine whether informa-
tion is useful is a contrast level in an image sensed by the UAV
1. An image of cloud cover will have low contrast, while a
useful image of the enemy craft 8 will include objects that
have contrast with respect to their backgrounds. By prevent-
ing transmission of non-useful information, circuitry in the
UAV 1 may be designed to have lower bandwidth and power
requirements then a circuit which must also transmit non-
useful information. The decision whether or not to transmit
may be made with respect to individual pixels or with respect
to entire image frames, depending on programming selected
by a user. Capacity of transmission of useful information and
speed of transmission is increased. The resulting decrease in
total transmission of information permits the use of simpler
circuitry and lowers power requirements. The efficiency and
reliability of processing at the command and control station 4
is also increased.

The present system comprises a rapid learning system. A
rapid learning system performs auto-adaptive learning con-
tinuously, as sensor input values are received in real time.
Additionally, the rapid learning system monitors, forecasts or
controls data in real-time. The present specification is
described in the context of the art of machine learning and
adaptive systems. There is a wide range of literature further
describing the basis for mathematics utilized here in the con-
struction and performance of learning systems. Further back-
ground will be provided by R. J. Jannarone, Concurrent
Learning and Information Processing, Chapman & Hall,
New York, 1997.

A general block diagram of the system incorporating an
embodiment of the present invention is shown in FIG. 2. The
UAV 1 comprises an electronics unit 20 including a sensor
array 22, a processing unit 24 and a transmitter 26. In the
present illustration, the sensor array 22 comprises a video
camera 30 having an array of pixels 32, each providing an
output indicative of light focused on the pixel 32. The present
embodiments may process measurements that are one-di-
mensional or multi-dimensional. A one-dimensional output
could comprise a gray-scale level wherein a single value is

US 8,069,132 B2

7

indicative of pixel output. Alternatively, a plurality of values
may represent output of one pixel, such as gray-scale level
and color levels. The sensor array 22 provides data to the
processing unit 24. The processing unit 24 provides video
output to the transmitter 26.

The present embodiments will achieve the necessary func-
tions to produce meaningful output data as in the prior art.
However, as further described below, the present embodi-
ments will have a greater generality, efficiency, and afford-
ability as compared to prior art in embodiments. Since speed
and capacity of the system are vastly improved with respectto
the prior art, a depth of processing is made available in appli-
cations where it could not be used before, for example, real-
time video processing of entire rasters at many frames per
second. New market segments for adaptive processing are
enabled.

Data is gathered in successive time slices. The greater the
temporal resolution of the data gathering, the shorter the
period of each time slice will be. In order to provide for
auto-adaptive processing, data received from each of a plu-
rality of sensors during successive time slices will be pro-
cessed. The functions performed by the present embodiments
include receiving input values in consecutive time slices and
performing processing operations during each time slice.
These operations may include estimating each input value
from current and prior input values; comparing each esti-
mated value to its actual value to determine whether or not the
actual value is deviant; replacing deviant or missing input,
values with their estimated values as appropriate; and updat-
ing learned parameters. Updating all learned parameters is
important, because it allows event recognition criteria to be
continuously, automatically, and adaptively updated over
time.

FIG. 3 is a block diagram of the processing unit 24. FIG. 3
represents one architecture which would be suitable for use.
However, items which are represented as discrete elements
could be embodied in single chips. Also, items which are
represented as a single box may have the various elements of
their functionality embodied in separate modules. The pro-
cessing unit 24 comprises a processing unit (PU) 40. The PU
40 is programmed to perform a number of different, related
operations, including coordinating operation of modules
described below.

In one preferred form, the separate operations to achieve
necessary processing functions as further described below are
each performed by a respective module. This modular
approach allows construction of each processing stage from a
simplified complement. For example, the modules described
below in the processing unit 24 may be embodied with field-
programmable gating arrays (FPGAs). The use of'a simplified
architecture facilitates simplified programming and rapid
configuration for a selected application. Speed that will
enable the processing unit 24 to provide new functionality is
provided along with improved interaction of system compo-
nents to produce a correlation matrix efficiently, as further
described below with respect to the correlator kernel module
50 (FIG. 3).

The processing unit 24 processes input data to provide
known forms of statistical functions. Embodiments of the
present invention facilitate real time generation of statistical
functions by the processing unit 24. Processing of large sets of
data that have previously been intractable in the environment
of a self-powered remote vehicle is also facilitated. The pro-
cessing unit 24 may include functionality to provide selected
statistical calculations. The inclusion of a particular module
in the processing unit 24 is optional. The requirements for
types of modules to be included in the processing unit 24 are

20

25

30

35

40

45

50

55

60

65

8

afunction of the application in which the system is employed.
The particular modules included in the present illustration
comprise a screener feature module 44, a screener kernel
module 46, a correlator feature module 48, a correlator kernel
module 50, a forecaster module 52 and an output module 54.
The operation of these modules is described with respect to
FIGS. 4 through 9 respectively. A data-responsive module 60
is provided that may compare process data to criteria such as
alert threshold values or event profiles. Additionally, the data-
responsive module 60 may display values, and may also reg-
ister imputed values, forecast values and statistics and event
profiles. An input metrics circuit 70 is synchronized by a
clock circuit 72 to provide inputs to the processing unit 24
comprising signals received from the sensors. The clock cir-
cuit 72 also synchronizes provision of output metric values in
the module 64 for each, time slice. In traditional applications,
a single processing unit 24 may be provided. However, for
facilitating processing of data represented by large numbers
of input values, e.g., entire video frames at a nominal repeti-
tion rate, it is desirable to provide for parallel, pipelined
operationutilizing a plurality of processing units 24 as further
described with respect to FIG. 10.

Operation of each of the modules 44 through 60 is
described further below with respect to FIGS. 4-9. Structure
of'these modules is described with respect to FIG. 3. It should
be noted that the name of each module in FIG. 3 is selected for
description in context of the present illustration, and does not
constitute a particular limitation with respect to structure or
operation. The modules 44 through 60 are connected to pro-
vide data or other signals either in series or pipelined to
successive stages. Particular connections are controlled by
the program module 42. The connections are programmed to
provide the operation described in FIGS. 4-9 below.

The modules 44 through 60 each have an input terminal
connected to a register 80, 90, 100, 110, 120 and 130 respec-
tively. The registers 80, 90, 100, 110, 120 and 130 each
respectively provide an input to logic units 82, 92, 102, 112,
122 and 132 from the logic units 92, 112, 122 and 132 respec-
tively. First through sixth buffers 86, 96, 106, 116, 126 and
136 receive data from the logic units 82, 92, 102, 112, 122,
and 132 respectively. Additionally, in the modules 46, 50, 52
and 54, auto adaptive learning memory units 94,114, 124 and
134 are interactively connected with the logic units 92, 112,
122 and 132 respectively.

Each of the buffers 86 through 136 provides an output to
each respective successive module and to the output metrics
module 60. The output metrics module 60 includes registers
for functions selected by a user. In the present illustration,
registers 150, 152, 154,156, 158 and 160 are provided. These
registers may respectively receive alert information based on
comparison to a threshold or other signature, displays, even to
take values, forecast values, statistics, and events. The events
register 160 responds to selected criteria, for example, a pre-
selected degree of deviation of a measured value from an
expected value.

Input values and calculated values are provided from the
input metrics circuit 70. For example, a side scan sonar
receiver may include 512 sensors in a row. A number of
spatial dimensions for the side scan sonar row is one.
*Dimensions may be spatial or may be indicative of a multi-
plicity of values associated with each cell.

Calculated values are generated to describe the data. The
calculated values are functions of input values selected to
reveal information about a collected set of data. In the present
illustration, the calculated values include four screener fea-
tures and four of correlator features per cell is four. Screener
and correlators features are functions that are designed to

US 8,069,132 B2

9

discriminate improbable or out-of-range data input points
from background clutter. Screener and correlator features
provide measures of deviance between actual and expected
feature values. In one form of processing of side scan sonar
values, a set of functions has been developed for distinguish-
ing presence or absence of a target and whether the target is a
Type 1 target or a Type 2 target. In one form, a Type 1 target
is indicated when a first pair of feature deviance values is
large, and a Type 2 target is indicated when a second pair of
feature deviance values is large. * Both pairs will have a small
deviance value in the absence of a target.

FIG. 4 is a flowchart illustrating operation of the screener
and kernel module 46. While the description of operation may
be described from initial startup, the present description
assumes that prior time slices have already occurred and that
information is already present in the various registers. This is
the typical situation. A routine that operates the screener
feature module 44 will be referred to as a calling program 200.
The calling program 200 starts at block 202, at which con-
figuration programs are loaded. Configuration values include,
for example, the number of dimensions, here one, the number
of data inputs per* dimension, here 512, and the number of
input metric values per data point. Where the input is total
sound intensity, the number of input metrics per data point is
set at one. Where a data point includes sound intensity at each
of three frequencies, the number of input metrics per data
point is set at three. Configuration values also include the
number of screener features per data point, here set at four and
the number of correlator features per data point, here set at
four. At block 204, the calling program 200 allocates memory
for inputs from the input metrics circuit 70.

Atblock 206, the program 200 locates memory cells for the
API metrics. In the present illustration, allocated API
memory would include memory for 512 cell metric values
and their 512 corresponding plausibility values. Plausibility
value as used in this description is a number between zero and
one used by a rapid learning system to control the weight ofan
input measurement with respect to learning. In one preferred
form, the calling program 200 allocates data locations for API
10 values for 512 cells, locations for 512x4 for feature output
values and memory for 512x4 correlator output feature val-
ues. The program 200 enters into a loop 208 in which updates
and calculations may be performed. The loop 208 begins with
block 210, and ends with block 216, which may return to the
block 210.

The block 210 provides the locally programmable option
to modify the above-described API configuration of memory
locations. At block 212, input values are loaded into the
memory locations dedicated thereto, and the corresponding
plausibility values are also loaded. The calling program 200,
at block 214, calls the first processor program, further
described with respect to FIG. 5 below, which may comprise
a set of deviation values between measured and predicted
values. Following, at block 216, the system decides whether
to return to block 210 to repeat the process or to proceed to a
block 218 at which configuration values may be stored, after
which at block 220, the routine stops. Criteria that may be
employed at block 216 may include whether processing of
data produced during each of a preselected number of time
slices has been completed. Additionally, a utility library 224
may be accessed. The library 224 includes a broad variety of
display and control functions for processing data to be fur-
nished to the output metrics module 60 (FIG. 3).

FIG. 5 is a flowchart illustrating programming and opera-
tion of the screener kernel module 46. A screener kernel
routine 240 begins at the block 242. At block 244, the routine
240loads the API values accessed by the calling program 200.

20

25

30

35

40

45

50

55

60

65

10

At block 246 the values may be organized for parallel pro-
cessing in embodiments in which parallel processing is uti-
lized. A significant factor in deciding whether to use parallel
processing is the rate of arrival of new data and the period of
each time slice. In a situation in which new data is arriving
every 10 ns, and one processor required 75 ns to process data,
then eight processors running in parallel would be needed to
process data in real-time. It should be remembered that in the
present context, real-time refers to processing without build-
ing up a backlog of sensor data. In the current illustration, a
line of cells of 512 values is organized. Each parallel proces-
sor would process 64 cells. The processor routine would
organize parallel processing by distributing sets of 64 input
values and 64 plausibility values to corresponding processing
modules.

At block 248, the routine 240 at block 254, parallel output
metrics are collected. Block 248 represents a subroutine
described in further detail with respect to FIG. 6. At block
252, free parallel outputs may be collected. At block 254,
auto-adaptive learning memory (ALM) values are saved to a
core file. At block 256, processing for a current time slice is
completed, and the routine 240 retums to block 242 for pro-
cessing during a next time slice.

FIG. 6 is a flowchart illustrating programming and opera-
tion of a processor subroutine 270 which is called at block 248
in FIG. 5. The subroutine 270 begins with block 272, at which
an operation performed in accordance with embodiments of
the present invention and described in the present context as
a window function is called. The window function is
described in greater detail with respect to illustrations begin-
ning with respect to FIG. 13 below. The windowing feature
selects data from nearest data locations in time and space for
calculation of values. At block 274, the screener kernel, fur-
ther described with respect to FIG. 7 below is called. At block
278, the correlator kernel, described with respect to FIG. 8 is
called. At block 280 the forecaster function may be called and
at block 282, a range of output values for a current time slice
is tabulated. The subroutine 272 utilizes a utility library 284.

When the screener kernel 274 is called, each feature input
value for a given time slice is transformed into a deviance
value. The deviance value comprises an input for the correla-
tor feature processor at block 276. When the correlator kernel
278 is called, the correlator kernel 278 utilizes the window
function to impute each current value as a function of a
configurable number of nearest neighbor of values in time and
space. This is explained in further detail beginning at the FIG.
13 below. Atblock 278, a correlation matrix is provided to the
forecaster.

The forecaster 280, when utilized, produces a forecast for
each feature and each time slice, including any configurable
number of future time slice forecasts. The forecaster 280 may
utilize prior art forecasting functions. While the forecasting
functions are known, the forecasting output values are uti-
lized in accordance with embodiments of the present inven-
tion to improve event recognition, including a values, devi-
ance detection and deviance correction. Established
correlational systems cannot distinguish underlining deviant
values from apparent deviant values that are not in fact devi-
ant. The present method can uniquely discount such appar-
ently deviant values by using previously generated forecasts
and to identify those apparently deviant values that are close
to their forecast values, and therefore most likely are not
deviant. The output processor 282 received deviance values
from the screener kernel 274 in the correlator kernel 276
along with all ports from the forecaster 284 utilization in
accordance with embodiments of the present convention as
further described below.

US 8,069,132 B2

11

FIG. 7 is a flowchart illustrating the operation in program-
ming of the screener kernel 274. At block 290, learning
weights are updated. At block 292, deviance value estimation
is performed, and an ALM updating is performed. At block
294, in accordance with embodiments of the present conven-
tion, the screener kernel 274 provides output plausibility val-
ues for use in identifying deviant events. At block 298, down-
stream registers are updated. The functions at blocks 290
through 298 are separable and may be performed in parallel.

FIG. 8 is a flowchart illustrating the operation and pro-
gramming of the correlator kernel 278. At block 310, imput-
ing weights are calculated based on most recently updated
correlator learned parameters. At block 312, deviance values
are estimated by use of the correlator kernel 270. At block
314, output plausibility values are set utilizing the correlator
kernel 278. At block 318, the ALM values are updated, and at
block 320, downstream registers are updated.

FIG. 9 is a flow chart illustrating the operation and pro-
gramming of the output processor 282. At each time slice, the
output processor routine 282 calls an overt processor routine
330 which provides values to the alert module 150. The alert
processor module 330 utilizes deviance and plausibility val-
ues provided to it from the screener kernel module 46 and the
correlator kernel 50. The alert processor routine 330 employs
an easily programmable window function. The window func-
tion selects an estimation set, described with respect to FIGS.
13-17 below, for processing. The display processor routine
332 operates in a similar matter to produce outputs for graphi-
cal display. A global imputer routine 334 operates similarly to
the alert processor routine 330 to produce imputed metrics.
The imputer routine 334 utilizes plausibility values based on
previously obtained input metrics from the data gathering
routine 210 (FIG. 4). A forecaster routine 336 produces
excessive outputs. A statistical report processor 45 and the
event longer routine 340 produced current results and over-
write prior results.

FIG. 10 is a flowchart illustrating parallel operation of the
processor module of FIG. 5. During each time slice, the
processor routine 240 provides the parallel processing mod-
ule 246 (FIG. 5) with API values 350. At block 352, the
parallel organizer 246 provides API input values including
configuration parameters and input measured values along
with auto-adaptive learning memory values. In block 352,
values are distributed to separate processing modules. For
example, the first 64 input values and their corresponding
plausibility values would be supplied to module 272-1. Suc-
cessive groups of 64 output values and corresponding plau-
sibility values would be supplied to modules 272-2 through
272-n. In this manner, output values for an entire line are
collected and at step 354 are combined and provided as col-
lected parallel outputs and for the API at block 250. The
parallel collected output processor output values 250 are
received at an output 358 (F1G. 5). Consequently, operation of
the circuitry of FIG. 3 is enabled.

Referring again to FIG. 3, operation of the processor 40 is
described. Output signals produced during each of the num-
ber of time slices are used during a current time slice, which
will be referred to as t0. The outputs being utilized during
time t0 are illustrated in FIG. 11, which is a chart illustrating
the signals used by each of the modules 44-60 during the time
slice t0. The processor 40 receives the values collected during
step 352 (FIG. 10). When the input measured time slices
arrive sufficiently slowly so that the processor 40 can keep up
with successive inputs, the modules 44-60 could operate
sequentially. Alternatively, the processor 40 could sense a
higher data input rate as follows. At the beginning of a time
slice t0, the screener feature module 44 would convert input

20

25

30

35

40

45

50

55

60

65

12

metrics 352 (FIG. 10) for the time slice t0 into outputs of the
screener feature module 44 when it sends the values into the
buffer 86 for later downstream processing. Meanwhile, the
screener kernel module 46 has transformed feature values
from time slice t-1 based on the input metrics received in time
slice t-1 into deviance values and placed the values into buffer
96 for later downstream processing.

The correlator feature module 48 provides outputs to the
buffer 106. Similarly, the correlator control module 50 pro-
vides calculated outputs based on deviance values previously
computed by the screener kernel module 46 at time slice t-1
and based on input metrics received in time slice t-3 into
deviance values to the buffer 116. Meanwhile, the forecaster
module 52 would use output values that were previously
updated by the correlator kernel module 50 at time slice t-1.
Based on input metrics received at time slice t-4, forecast
values for time slice t-3 were produced. Optionally, additional
values may be produced utilizing more time slices into the
future relative to time slice t-4 and placed into the forecaster
module buffer 126. Concurrently, the output module 54
would ‘transform input values received from time slice t-5
along with output deviants and plausibility values from the
screener kernel module 46 corresponding to input values
received from the time slice t-5 that were completed during
time slice t-4. Further, the correlator kernel output 50 input
receives deviance and plausibility values corresponding to
input values received at time slice t-5 that were computed
during time slice t-2, and provides various output values and
stores them in register 136, the future updating output metrics
358 (FIG. 10), alerts 150, displays 152, imputed values 154
and the statistics registers 158.

FIG. 12 is an illustration of a parallel, pipelined configu-
ration for the processor 40. A group of processors 272 may be
connected in parallel. Further, a plurality of such groups may
be connected in series to comprise a pipeline. Daisy wheel
registers, each of which can be quickly updated at the end of
each time slice, may be used to embody the registers 80, 90,
100,110,120 and 130 (FIG. 3) when used in conjunction with
buffered pipelining. By providing for parallel processing,
output metrics may be produced just as quickly with one set of
register hardware as with the alternative of having six distinct
sets of register hardware operating in a sequential fashion.
One sixth of the hardware also requires %6 of the logic code to
be programmed.

FIGS. 13 through 17 are each a chart useful in understand-
ing processing data sets having various numbers of temporal
and spatial dimensions. Embodiments of the present inven-
tion utilize a form of “nearest neighbor” processing in order to
impute expected values for particular cells. As further
explained below, the processor 40 utilizes a Markov chain. A
Markov chain embodies a model of sequences of events
where the probability of an event occurring depends upon the
fact that a preceding event occurred. In prediction and simu-
lation, the principle of the Markov chain is applied to the
selection of samples from a probability density function to be
applied to the model. The “windowing” function described
above refers to the selection of adjacent cells within selected
dimensions to be processed together. By utilizing the Markov
chain, reliable estimations may be made for imputed values,
and the complexity, expense and time required to generate an
inverse of a covariant matrix may be avoided.

In each of the illustrations of FIGS. 13-17, a hypothetical
situation is selected in which the sets of data describing dif-
ferent sorts of environments are defined. In each illustration,
the environment is characterized by a number of temporal and
spatial dimensions. In each case, an imputed value calculated
during a current time period t0 will be described as a depen-

US 8,069,132 B2

13

dent value indicated by space D. The dependent value D is
calculated as a function of independent values, indicated in
each matrix location as 1. The independent values I are values
that are taken as having been established with respect to the
cell currently being computed. Generally the independent
values I will have been established for either successive time
periods or successive locations. Another class of independent
values I is referred to as F. These values are “frame” values.
They are described separately since they are in cells which do
nothave an adjacent location on at least one side ofthe cell. In
each of the illustrations below, the dependent value is calcu-
lated in terms of values obtained from two prior time slices,
labeled t-2 and t-1, which are the two successive time slices
preceding time t0. In each case, values are entered in a matrix
wherein rows correspond to time slices t-2, t-1 and t0 respec-
tively.

Each column corresponds to a location. For example, in
FIG. 13, eight locations, labeled 0 through 7 are provided. In
the illustrations of FIGS. 14-17, sixteen spatial locations are
provided. The outer locations are labeled F and F, respectively
corresponding to left and right frame cells respectively. In
practice, the outer locations could be at left and right hori-
zontal ends of a space. However, left and right are used here
only to denote first and last locations. Other spatial relation-
ships or non-spatial relationships could be represented. The
locations between the outer frames F and F are labeled 0
through 13. In one form, frame values may be set to zero.
Providing frame values allows the windowing function to
select the number of “nearest neighbors™ in each estimation
set even when a value does not have a nearest neighbor.

In operation of embodiments of the present invention, a
“windowing” function selects an appropriate set of I values
from a data array to comprise a correlation matrix used to
impute a D value. This set is a function of the estimation
algorithm. The data array referred to here is data responded to
by a system. In one preferred form, the data array is a record
organized by sensors producing outputs for data points,
attributes per data point and time slices. Attributes per data
point may include values for each of the different features,
values in each of a plurality of dimensions or other known
forms of measurement. For purposes of the present descrip-
tion, this set is called an estimation set. As further described
below, the members of an estimation set are a function of the
number of attributes of a data point and the number of time
slices utilized.

In one preferred form, the estimation set comprises a set of
nearest neighbor values in each of N dimensions, where N is
a non-negative integer. Dimensions may be spatial or tempo-
ral. More than three spatial dimensions or one temporal
dimension may be utilized to characterize a data point.
Indeed, in some cosmological models, there may be dozens of
spatial dimensions. Where a value is measured over time, M
sets of values, one from each of M successive time slots, are
utilized. Commonly, M is selected to be three, representing
the time slots t-2, t-1 and t. Other values may be selected.
However, M=3 has been found to be a useful optimization of
complexity of processing versus precision of result. Addition-
ally, in accordance with embodiments of a preferred form of
the present invention, it has been found that it may be
assumed that correlations for sets including F and F may be
used in the same manner as sets in the center of a data array.

FIG. 13 is representative of measurement of a value versus
time but without spatial dimensions. There are eight features
describing a given cell. Here, a cell is a row of data. The
parameter indicated by the data in each ¢ location comprises
a value that is not related to an adjacent value. In this case, in

20

25

30

35

40

45

50

55

60

65

14

each of the columns 0 through 7, the current value at time t0
is a function of the two preceding values respectively at times
t-2 and t-1 respectively.

FIG. 14 represents data for a situation in which one spatial
dimension is measured with respect to time. FIG. 4 may be
used to represent the above-described side scan sonar appli-
cation. A “window” comprising data from the three time
periods of interest and the independent values surrounding a
current location to be computed is selected. The window has
anumber of columns and rows that correspond to the estima-
tion set. In the present illustration, each “window” will com-
prise the estimation set. The window will be indexed across
the data matrix one step at a time so that current estimation
sets are accessed and imputed values D can be calculated. The
first window will include locations to F, 0 and 1. In FIG. 14,
these are indicated by light shading. Successive “windows,”
or estimation sets, such as 0-1-2, 2-3-4; etc. will be selected in
sequence. In FIG. 14, a middle window cell comprising loca-
tions 5-6-7 is illustrated. Indexing proceeds through the end
of the dimension up to the last window cells, which in the
present illustration are cells 12, 13 and F.

FIG. 15 illustrates a tabulation of data obtained for param-
eters in one spatial dimension at a given time. The rows
represent space slices rather than time slices, and the columns
indicate locations within each dimension. The dependent
value to be imputed is calculated in terms of the preselected
number of surrounding locations. In the present illustration,
the estimation set consists of eight surrounding locations.
These locations are the surrounding columns indicative of
locations, and the two preceding rows indicative of measure-
ments in successive dimensions.

FIG. 16 consists of FIGS. 16a, 165 and 16¢. The param-
eters measured in this illustration include one feature per cell.
Each parameter is time variant and has two spatial dimen-
sions. The estimation set includes values in two preceding
time slices and in surrounding locations represented by adja-
cent columns. Additionally, as in FIG. 15, values and sur-
rounding dimensions are used to calculate the imputed value.
FIGS. 164, 165 and 16¢ respectively represent data matrices
for time slices t-2, t-1 and tO respectively. Each independent
value submatrix comprises 15 boxes. The dependent value D
needs to be located between both preceding and succeeding
dimensional rows.

FI1G. 17 consists of FIGS. 174-17i. In this illustration, there
is one feature per cell having three spatial dimensions. Three
window slices representing values produced during time
slices t-2, t-1 and t0 respectively. Values for a third dimension
are based on measurements in two other dimensions. FIGS.
17a, 175 and 17¢ respectively represent initial values at the
locations F, zero and 1. In these matrices, a full set of sur-
rounding locations is not available. Full value matrices are
illustrated in FIGS. 17d through 17:. An illustrative calcula-
tion is illustrated with respect to FIGS. 174, 17¢ and 17f. As in
the case of FIG. 16, rows surrounding the dependent value D
must be included in the value matrix. Additionally, the matri-
ces surrounding the dependent value in the third dimension
must also be included. Imputed values may thus be calculated
for the point in a three-dimensional space.

FIG. 18 is a block diagram of a processing unit interacting
with an application program interface and sensors. FIG. 18 is
a block diagram similar to FIG. 2 illustrating and electronics
package 20 and sensor 30 interacting with a processing pack-
age 424. The processing package 424 has input data and
output data coupled via an API 430 to a process simulator
436. A sensor control unit 440 may be coupled between the
process simulator 436 and the sensor 30. The sensor control
circuit 440 may adjust values for black-and-white levels,

US 8,069,132 B2

15

contrast and filtering functions. Additionally, a telemetry con-
trol circuit 450 may be coupled between the process simulator
436 and the transmitter 26. In one embodiment, the telemetry
control 450 responds to the output matrix unit (FIG. 3) to
transmit or reject selected output data.
FIG. 19, consisting of FIG. 19« and FIG. 195 represents a
nominal set of input information from a video camera and
processed data from which clutter has been removed. FIG.
19a represents a nominal display of raw data illustrating
amplitude versus wavelength of detecting-video signals on an
arbitrary scale. FIG. 195 represents output data as processed
by the processing unit 424. Commonly, the processing rou-
tines performed by the processing unit 424 reject meaningless
returns and provide out put information with minimal or no
“false positive” output signals.
FIG. 20 is a block diagram illustrating a system utilizing a
plurality of processing units 524, 524-1, 524-2, 524-n. Each
processing unit 524 is configured differently so that efficacy
of various settings may be compared. Each processing unit
524 may perform the same function, but with different set-
tings. Periodically, for example, weekly, a comparison circuit
540 measures the relative success of each processing unit 524
in terms of a preselected criterion. For example, the prese-
lected criterion may be smallest mean squared the deviation
between actual and imputed values during the monitoring
time. The most successful group of settings may be selected
for processing data during a next time period. This operation
may be described as convergent data fusion in that conver-
gence of actual and imputed values may be minimized.
The present embodiments provide for separate parallel
operation of calculation models. Consequently, adaptive pro-
cessing may be utilized for tasks that were previously con-
sidered to be intractable in real time on hardware of the type
used in low powered, portable processors. The option of
modular pipelined operation simplifies programming; design
and packaging, and allows for use of FPGAs in place of
high-powered processors. Learned parameter usage, based on
assuming that the same estimation functions and learned
parameter values can be used to produce the estimates that in
turn, allow unexpected events to be detected more simply.
Field programmable windowed functionality can be applied
to many applications by programming the data matrix to be
selected by a “windowing” function. Auto-adaptive learning
memory may be distributed over pipelined processing mod-
ules. The present subject matter being thus described, it will
be apparent that the same may be modified or varied in many
ways. Such modifications and variations are not to be
regarded as a departure from the spirit and scope of the
present subject matter, and all such modifications are
intended to be included within the scope of the following
claims.
What is claimed is:
1. A computer implemented method for processing an
array of data collected through a sensor array over successive
time slices with a plurality of data points being provided
during each time slice, comprising:
defining a current estimation set for a dependent data loca-
tion for which a value will be imputed, said estimation
set comprising the dependent data location and a prese-
lected number of nearest neighbor values surrounding
the dependent data location in a current time slice;

accessing estimation sets from each of a preselected num-
ber of time slices corresponding to said current estima-
tion set; and
imputing a value to the dependent data location in at least
one dimension among space, time, and feature dimen-
sions in accordance with an estimation function; and

evaluating usability of said array of data collected through
said sensor array; and

20

25

30

35

40

45

50

60

16

determining whether or not to transmit said array of data
based on said evaluation.

2. The method of claim 1, wherein evaluating usability
comprises determining a difference between imputed values
of dependent data locations and measured values of corre-
sponding data points.

3. The method of claim 2, further comprising transmitting
only data for which differences exceeding a preselected level
have been determined.

4. A system for performing an auto-adaptive function com-
prising:

a processing unit having a memory configured to organize
input data for a plurality of data points for successive
time slices, the processor configured to select a current
estimation set in at least one dimension for a dependent
data location for which a value, which is at least one
dimension among space, time, and feature dimensions,
will be imputed, said estimation set comprising the
dependent data location and a preselected number of
nearest neighbor values surrounding the dependent data
location in a current time slice;

an arithmetic unit configured to be executed by said pro-
cessing unit, said arithmetic unit configured to impute a
value, which is at least one dimension among space,
time, and feature dimensions, to each dependent data
location in accordance with an estimation function; and

an output module configured to be executed by said pro-
cessing unit, said output module configured to evaluate
usability of said input data and determine whether or not
to transmit said input data based on said evaluation.

5. The system of claim 4, wherein the arithmetic unit is
further configured to determine a difference between imputed
values of dependent data locations and measured values of
corresponding data points.

6. The system of claim 5, wherein the output module is
further configured to transmit only the input data for which
differences exceeding a preselected level have been deter-
mined.

7. A computer readable medium having stored thereon one
or more sequences of instructions for causing one or more
processing units to perform the steps for processing an array
of'data collected over successive time slices with a plurality of
data points being provided during each time slice, the steps
comprising:

defining a current estimation set for a dependent data loca-
tion for which a value will be imputed, said estimation
set comprising the dependent data location and a prese-
lected number of nearest neighbor values surrounding
the dependent data location in a current time slice;

accessing estimation sets from each of a preselected num-
ber of time slices corresponding to said current estima-
tion set; and

imputing a value to the dependent data location in at least
one dimension among space, time, and feature dimen-
sions in accordance with an estimation function; and

evaluating usability of said array of data; and

determining whether or not to transmit said array of data
based on said evaluation.

8. The computer readable medium of claim 7, wherein the
evaluating usability step further comprises determining a dif-
ference between imputed values of dependent data locations
and measured values of corresponding data points.

9. The computer readable medium of claim 8, further com-
prising the step of transmitting only data for which differ-
ences exceeding a preselected level have been determined.

