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ABSTRACT 
 

 

When making critical combat decisions, commanders must often decide to either act at 

once or hold off and get more data.  Immediate action may offer tactical advantages and 

improve success prospects, but it may also lead to heavy losses.  Getting more data may 

improve situational awareness and avoid heavy losses, but resulting delays may cause 

other problems.  Making the right choice depends strongly on knowing how much could 

be gained from gathering more data and how much could be lost by delaying action.  

Seeing what to expect will help decide if getting more information is worthwhile.  An 

example is presented where a commander must decide to either launch an amphibious 

landing at once or hold off, pending more mine detection data.  Results show that 

forecasting situational awareness may add substantial command and control value.  This 

paper offers a data-based inference system that is intended to help the commander make 

the right choice.  The system is presented in a minefield detection setting.  The system 

allows the commander to see how the operational picture might change with the arrival of 

more data.  The system produces “decisive inference” by effectively updating both 

situational awareness and choice tradeoffs as quickly as new information arrives.  The 

system is based on an “auto-adaptive” data analysis process and an “optimal value” 

choice model.  An analytical framework for the results is included, based on a decision 

model for optimal choice value, along with a statistical basis for auto-adaptive 

information processing. 
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INTRODUCTION 
 

 

This paper offers  an inference system for helping a commander make the right choice 

during time-critical operations.  The paper focuses on situations where information that 

could alter the commander’s awareness arrives very quickly.  The paper focuses further 

on deciding whether or not to launch an invasion through a suspected minefield, based on 

anticipating what kind of mine location information to expect beforehand. 

 

The results of this paper are made possible by powerful recent developments in littoral 

warfare.  The emergence of unmannned underwater vehicles (UUVs) has inspired related 

analysis methods (Azimi-Sadjadi, Yao, Huang, & Dobeck, 2000; Harris, Avera, & Bibee, 

2002; Yao, Azimi-Sadjadi, Jamshidi, & Dobeck, 2002; Wernli, 2001; Bachkosky, 

Brancati, Conley,  2000), some of which allow operational awareness to improve as 

quickly as UUV data are gathered (Jannarone & Tatum, 2005; Jannarone, 1997).  Due to 

these developments, a commander can now anticipate how long it will take to obtain 

mine detection information and what kind of situational awareness improvements to 

expect throughout the mine detection process. 

 

Beyond UUV-based minefield detection, the system offers added value in a wide variety 

of applications, military and otherwise, due to its auto-adaptive, decision-based nature.  

Closely related systems have recently been applied to dynamically optimizing distributed 

sensor fields (Wettergren, 2006), and a related process has also been validated for 

magnetometer-based submarine detection (Jannarone & Tatum, 2006).  Efforts are also 

underway to validate and deploy the system for sonar-based submarine detection and 

camera-based image processing.  In all such applications, the system adds value by 

clarifying situational awareness as conditions change, within cluttered field 

environments. The system produces “decisive inference” by effectively updating both 

situational awareness and choice tradeoffs as quickly as new information arrives. 

 

 

The remainder of this paper describes two key system components within a minefield 

detection context and provides a detailed example.  System components include an “auto-
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adaptive” data analysis process and an optimal value (OpVal) choice model, as described 

in the next two sections.  

 

 

AUTO-ADAPTIVE PROCESS 
 

 

Suppose that a task force commander has been ordered to launch a landing within 48 

hours, and has been further ordered to consider only two options.  The first option (A) 

would require heading to a beachhead 48 hours away.  The second option (B) would 

require heading to a potentially more hazardous beachhead in the opposite direction, only 

24 hours away. Under option A, the commander would immediately launch an attack 

upon arrival.  Under option B, the commander would take time to detect mines prior to 

launching the landing after arrival.  The commander must either take the A path that is 

known to be less hazardous in the absence of additional information, or take the B path 

and hope that 24 hours worth of additional information will make it less hazardous. 

 

Insights about information that might unfold under option B could come from prior 

results, such as a recently completed empirical analysis of minefield data (Jannarone & 

Tatum, 2005).  Such results could imply that initial mine detection operations along the 

Option B path could produce a certain number of hits if no mines were present, but a 

much larger number of hits if a minefield was present.  Hit expectations given a minefield 

would exceed hit expectations with no mines present to the point that minefield presence 

or absence could be evaluated after the first hour of mine detection operations (see the 

Detailed Example section below).  Once an initial minefield presence determination was 

made, follow-up mine detection operations could clarify mine locations, as shown in 

Figure 1. 
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Figure 1.  Mine detection likelihoods and Confidence Regions 

After One, Four, and 16 Hours 



 5

  

More specifically and as formulated below, each of the three graphs in Figure 1 

represents cells that are organized into a grid on the suspected minefield region.  Each 

cell represents a small volume of water below it.  The circles in the graphs are based on 

estimates from an auto-adaptive process.  The process first computes actual and expected 

values within each cell for several features, which are computed as functions of observed 

sonar echo strengths in and around the cell.  The process then computes a global deviance 

value for each cell, based on the differences between expected and actual feature values 

for the cell.   Actual feature values are computed as functions of echo strengths from 

sonar readings.  Expected feature values are estimated from actual feature values in 

nearest neighbor cells.  Global deviance values are standardized so that they have an 

expected value of zero and a standard deviation of 1. 

 

The process achieves auto-adaptivity within UUV passes by continuously adjusting 

feature function estimation parameters, as well as global deviance standardizing values, 

as quickly as new cell data arrive.  As a result, the process continuously adjusts for 

changing clutter and background conditions in the region.  The process also achieves 

auto-adaptivity between passes by combining features from new passes with features 

from previous passes.  For example, if four features are determined per cell in one pass, 

the process utilizes 16 features in four passes in order to compute deviance values with 

more precision. 

 

Deviance values computed in this way are monotically related to likelihood ratios based 

on reasonable target versus no target data assumptions such as those given below.  For 

example, if deviance values in each cell were independently and identically distributed 

with a mean of zero with no mine in the cell but with a higher mean with a mine in the 

cell, then high deviance values would correspond to a high likelihood ratio while low 

deviance values would not. 

 

In the presence of historical data containing specific targets, functions for computing 

feature values are determined analytically.  For the analysis that led to the Figure 1 



 6

results, four features were identified for which the auto-adaptive process produced 

relatively high deviance values when targets were present.  In the absence of such 

historical data, the process computes deviance values directly from raw sensor data.  

Anomalies that are uncovered in that case simply reflect unexpected changes that are 

worthy of generating alerts. 

 

Along with individual mine likelihood circles, each Figure 1 graph shows two expected 

mine coverage regions with shaded, dashed borders.  The coverage regions bounded by 

long and short  dashes  are constructed so that the expected percentages of mines within 

them are 99% and 90%, respectively.  While the circles in Figure 1 are based on 

analytical results from the auto-adaptive process, the confidence regions are based on 

work in progress.  Elliptical confidence regions for each graph could easily be computed 

analytically, by first estimating deviance value mean and variance values along 

dimension, along with a deviance covariance value.  Based on those estimates, an 

elliptical bivariate normal distribution profile could be computed that covered 90% or 

99% of the detected mines.  Since mines cannot be expected to fall within elliptical 

regions, however, more general procedures based on fitting higher-degree profiles to 

deviance values are being employed.      

 

As Figure 1 shows, repeated UUV scans can be expected to produce sharper mine 

presence images.  In the bottom graph, mine presence likelihoods are low relative to 

background levels, and mine coverage regions are large relative to the two top graphs.  In 

the middle graph, information that has been added to the bottom graph has improved 

clarity.  Many circles having low likelihoods from the bottom graph have disappeared, 

many others have become brighter, and the coverage regions have become smaller.    In 

the top graph, nearly all circles are either very bright or very dull, substantially clarifying 

where mines are present and absent, to the point that a prospective channel through the 

minefield has emerged. 

 

The bottom graph shows that mines are likely to be present, because target hits have 

significantly exceeded chance levels (see Detailed Example section below) and they 
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systematically distributed.  However, the figure gives only a rough sense of where the 

mines are concentrated.  After four hours, the task force could proceed much more safely 

through more water and concentrate mine countermeasures on a narrower region.  After 

16 hours, the minefield would be tightly identified, to the point that an open channel has 

emerged. 

  

In order to be effective, the auto-adaptive process must produce event recognition signals 

such as those in Figure 1, in real time.  The process does so by efficiently receiving 

information, producing event detection signals, updating learned information about 

background clutter, and correcting for background clutter.  The process also refines target 

likelihoods and related displays immediately upon new data arrival.  For the Figure 1 

example, each new pass over the minefield region would result in a new set of feature 

values.  The process would combine them with previously measured features values as 

described below to refine mine detection likelihoods and Figure 1 graphs based on them.   

 

The process evaluates mine detection data as UUVs move along.  It produces alerts like 

the circles shown in Figure 1 when within-cell intensity values are unexpected, relative to 

recently learned expectations, all in real time.  In this way, the process can produce alert 

signals that are robustly accurate against changing background noise, which it 

continuously learns to expect and remove. 

 

The auto-adaptive process is designed for a variety of applications, other than UUV-

based mine detection.  The process can operate with packets of information in spatial 

cells along one, two, or three dimensions, in distinct time slices.  At the beginning of each 

time slice it receives a configurable number of feature values within each cell, and at the 

end of each time slice it produces a target likelihood value for each cell.  Resulting 

likelihood values can be used to produce alerts, generate intensity plots such as those in 

Figure 1, or prioritize subregions for further examination. 

 

A precursor to the auto-adaptive process was developed for broad use in monitoring, 

forecasting, and control (Jannarone, 1997).  That process has since been used 
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commercially for electricity demand and price forecasting (Jannarone, 2003) as well as 

application performance monitoring (Netuitive, 2006).  The new process described herein 

has been designed to produce anomaly signals very quickly and compactly on spatially 

registered grids such as Figure 1, (Jannarone, Tatum, & Gibson, 2006).  By contrast with 

its precursor, the new process employs nearest neighbor estimation and staging toward 

that end, as described in the remainder of this section.   New process effectiveness has 

been demonstrated by recent results (Smith & Jannarone, 2004, Jannarone & Tatum, 

2005, Jannarone & Tatum, 2006).    

  

During each time slice, the process is designed to operate in pipelined stages, which in 

turn are designed for implementation on fast, compact field programmable gating arrays 

(FPGAs).  Each such stage operates by passing window functions over each spatial cell at 

each time slice.  Window functions may be partitioned within each stage and processed in 

parallel if speed and memory requirements so dictate. 

  

The following formulation covers the one-dimensional case, and values in brackets cover 

the Option B case in the example.  Unless otherwise stated, all bold symbols below 

represent row vectors.  Assume that a UUV is producing one set of  echo intensity values 

above and below itself during each time slice as it moves from left to right in the 

minefield region (see Detailed Example section).  Let t = 1, . . ., [MAX]
t  represent time 

slices as the UUV moves from left to right.  Let c = 1, . . ., [MAX]
c  represent the cells 

above and below the UUV for which the UUV obtained an intensity value at that time 

slice.  Let f = 1, . . ., [MAX]f   represent features that are being measured within each cell.  

Let 
tcf

x  represent the measured UUV value on feature f within cell c at time slice t.  The 

auto-adaptive process is partly based on the assumption that 

(1) 

tcf
x  = 

f
α +

tcf
β +

tcf
e , 

 

where 
f

α  is an anomaly value for feature f that would only be nonzero in the presence of 

a target, 
tcf

β  is a continuously updated expected background value, and 
tcf

e  is an 
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independent and identically distributed error value with a mean of zero.  The process is 

also based on the assumption that 

(2) 

tcf
β  = 1,t cf

µ − +

[MAX][WINDOW]

[WINDOW] [WINDOW]

1,

1

ft c c

t udgcf udg

gu t t d c c

xρ
+

−
== − = −

∑ ∑ ∑ , 

 

where 1,t cf
µ − and 1,t udgcf

ρ −  are background mean and regression weight estimates, 

respectively,  which have been updated just prior to time point t  for estimating 
tcf

x values 

from the recent and nearest neighbor 
udg

x  values, and 
tcf

e  is an error value.  Thus, each 

feature estimate within each cell is formulated as a function of other current feature 

values in the cell, other current values in the 2 [WINDOW]
c  nearest neighbor cells above and 

below it, and recent values in corresponding cells that were observed from one time slice 

to [WINDOW]
t  time slices ago. 

 

In order to produce background 
tcf

β  estimates for cells that lie within [WINDOW]
c  cells of 

boundary cells, the process sets 
tcf

x  = 0 for c′  = c
+ +1, . . . , + [WINDOW]

c , and for c′  = 

− [WINDOW]
c , . . ., 0, respectively.  Also, in order to exclude estimating each 

tcf
x  as a 

function of itself, the process sets 1,t tcfcf
ρ −  = 0.  Proceeding in this way allows the process 

to produce reasonable estimates at grid boundaries, while avoiding the time consuming 

use of special logic to treat boundary cell estimation differently. 

 

The auto-adaptive process continuously updates and adjusts estimates for background 

clutter, based on learning functions with the following properties (Jannarone, 1997).  

Process learning functions produce weighted least squares estimates based on prior 

observed values.  As a result, their interpretation and computation are straightforward.  

Process learning functions also give more recent observed values more weight that less 

recently observed values.  As a result, they can quickly reflect and compensate for 

changing background conditions.  Process learning functions use recursive functions that 

quickly update estimates at each time point as a function of only observed values at each 

time point and values that were updated during the immediately preceding time point.  As 
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a result, the process can update learned parameters very quickly.  Process learning 

functions also require that only learned parameter values from the last time point and 

observed values from the last few time points be retained.  As a result, Process modules 

can be sufficiently small to reside on off-board sensing platforms. 

 

 

For t = 1, . . .,  estimation formulas for background noise means have the recursive form,  

 

(4) 

tcf
µ  = (

t
l

tcf
x + 1,t cf

µ − ) / (1+
t

l ) 

 

where 
t

l is a positive learning weight that is computed in a way that satisfies the above 

properties, and 0cf
µ  is either set to 0 or estimated from the first few time slices.  Learning 

weights are formulated so that learning occurs in blocks, where the most recent block 

produces half of the overall prior impact in a weighted least squares sense, the next most 

recent block produces half of the remaining impact, and so on (Jannarone, 1997).  More 

comprehensive formulations that deal with missing and deviant values are provided 

elsewhere (Smith & Jannarone, 2004, Jannarone, 1997). 

 

Regression weights are updated as functions of recursively updated matrices, which may 

take on different forms that depend on different process models.  For some models 

regression weights are updated by updating inverses of mean squares and cross-products 

(MSCPs) among current and recent values.  Such matrices denoted by 

(5) 
[MSCP]

t
ω , 

 

are of order 

 

m = [WINDOW]
t ×(2 [WINDOW]

c +1)× [MAX]f  , 

 

and are based on all nearest neighbor time points, features, and nearest neighbor cells that 

would be needed to estimate background effects for any given feature, cell, and time 

point value.  In the [MAX]f = 4 case, for example, [WINDOW]
t  = 2, and [WINDOW]

c  = 2 would 

result in a fast and compact process based on m = 40. 
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Depending on the specific application, the process may update the [MSCP]

t
ω  matrix each 

time the window function passes over each cell (e.g., 1,000 times per time slice if 

implemented on each UUV in the Option B case].  In that case, for t = 1, . . .,  the 

updating formula would have the form (Jannarone, 1997) 

(6) 
[MSCP]

t
ω  = (1+

t
l )[ [MSCP]

t
ω +

t
l Tr r / (1+

t
l d)], 

 

where 

(7) 

r  = 
tc

x [MSCP]

-1t
ω , 

 

the T superscript denotes transposition, 
tc

x  is a row vector containing all feature values 

necessary for estimating cell c values at time  t, 

(8) 

d = 
tc

x Tr , 

 

and [MSCP]

0ω  = I. 

 

For example, each 
tc

x  would be made up of 40 values, including the 4 feature values in 

each of 10 cells: cell c, the two cells to its left, the two cells to the right, and the five 

corresponding cells that were observed one time slice ago. 

 

Alternatively, the process may compile cumulative MSCP matrices of the form, 

(9) 

t
δ  = 

[MAX]

1

T
c

tc tc

c=

∑ x x  

 

as an updating window function passes over all cells during each time slice, and the 

process may update MSCP matrices by computing, 

(10) 
[MSCP]

t
σσσσ  = (

t
l

t
δ + [MSCP]

1t−σσσσ ) / (1+
t

l ), 

 

and then computing 

(11) 
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[MSCP]

t
ω  = [MSCP] 1

t

−σσσσ . 

 

In either case, once [MSCP]

t
ω has been computed regression weights may be obtained by 

computing 

(12) 

t
ρ  = 

t
ω  [I−D

−1
(

t
ω )]. 

 

where
t
ω  is the inverse of the variance-covariance matrix,  D is the diagonal matrix 

function, 

(13) 

t
ω  = [MSCP]

t
ω + Ts s/ (1+d). 

 

Process models may be extended to include two and three spatial dimensions in a similar 

way. 

 

Based on the above model, feature deviance values within each cell may be obtained by 

computing, 

(14) 

tcf
z  = [(

tcf
x −

tcf
β )− [Z]

1,t tcfµ − ]/ [Z]

1,t tcfσ − , 

 

where [Z]

1,t tcfµ −  and [Z]

1,t tcfσ −  are learned deviance value means and standard deviations, 

respectively, which are updated continuously.  As a result, expected deviance values are 

zero if no mines are present but 
f

α  if mines are present, resulting in a monotone 

relationship between 
tcf

z  values and likelihood ratio values for any nonzero 
f

α  value. 

 

Based on the above model, feature deviance values within each cell may be obtained by 

computing, 

 

Provisions have been included in the process for dealing with numerical problems such as 

linear redundancy, ill conditioning, and with highly deviant or missing input values.  

Linear redundancy and ill conditioning problems are precluded by initializing the MSCP 

matrix and its inverse to the identity matrix, continuously checking their main diagonal 

elements, and either removing offending features or readjusting the matrices as problems 
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arise.  Whenever highly deviant or missing input values occur, they are replaced with 

estimated values, so that the learning process is not effected.  As an added benefit, the 

process imputes missing values in ways that are useful for pattern completion. 

 

 

OPTIMAL VALUE (OPVAL) CHOICE MODEL 
 

 

Operationally, the decision-maker is continually faced with comparing the likelihood of 

successful gains from searching further against the utility cost of making that other 

search.  In this context, utility cost includes items such as actual search cost along with 

time lost to searching, risk of missing mines if search isn’t performed, and so on.  

Experienced operational commanders make these tradeoffs intuitively.  However, 

situational awareness gained from an analytical representation of such expected gains and 

costs can provide useful information to facilitate the decision process.  This insight is 

representative of the classical econometric approach of using utility costs to inform 

automated decision making.  In the Figure 1 context, the likelihood of mine locations 

(represented by the deviance values from the auto-adaptive process) is typical of the 

information examined by an operator, whereas the analytical representation of risks and 

gains is typical of the information examined by a commander.  The auto-adaptive process 

creates the operator view of mine likelihoods for each pass of the mine searcher (or 

simulated results from a planned pass).  The OpVal model then takes this operator view 

and translates the mine likelihoods into measures of uncertainty in minefield existence, 

and creates an estimate of the improvement or degradation of that uncertainty that can be 

expected from future searches. This is the information that the commander may then 

weigh against the cost of performing successive searches. 

 

The OpVal choice model first converts expected and measured detection, false alarm and 

missed target frequencies to a future search value function, in a way that allows field 

modifications of choice models on the spot as tactical situations change.  The model 

could not conceivably automate command decisions in general, because such decisions 

are far too complex to model comprehensively.  However, the model can point out 

relatively simple tradeoffs, so that commanders will be able to estimate the expected 
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utility of gathering more information.  In the Figure 1 case comparable cost metrics and 

likelihoods could easily be assigned to false alarm rates, missed target rates, and their 

associated costs (see next section).  Comparable UUV deployment cost metrics could be 

assigned as well, giving commanders a better understanding of choices they are about to 

make. 

 

The focal decision within the Figure 1 context is whether it is worth spending the extra 

time to make another pass in the search for mines. Decision processes may operate at 

either the minefield level, which is the focus of the current OpVal model discussion, or 

the individual mine level, which would operate similarly.   At the minefield level, the 

decision process is based on potentially employing further searches in order to reduce the 

uncertainty in the simple binary hypothesis of H1: there is a minefield obstructing the 

path, and H0: there is no minefield obstructing the path. The probability of the hypothesis 

decision p = P(H) is the probability that there is a minefield obstruction, so that p = 0 and 

p = 1 represent the two hypothesis choices.  Generally, values of p will fall within this 

range, and thus the decision to take another search is based on whether it is expected that 

another search will significantly push the value towards one of those limits.  The decision 

process for the commander is to weigh the expected value (given as the reduction in 

uncertainty of the minefield/no-minefield hypothesis test) of the complete future 

sequence of potential searches against the cost of such a search strategy.  The OpVal 

model represents binary decision (search again vs. no search) and the binary hypotheses 

as a two-state test T with values t1 (looks like a minefield) and t2 (does not look like a 

minefield) as shown in the following: 

 

 

 T = t1 T = t2 

H1 (mines) P(H = H1 | t1) P(H = H1| t2) 

H0 (no mines) P(H = H0| t1) P(H = H0| t2) 

 

 

The values associated with each entry in this table represent the value of a given test 

result under each of the states of the system hypothesis. To the commander deciding 

whether or not there is a minefield, the important value is the uncertainty with which the 
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decision can be made given a test result.  The OpVal model represents these payoffs as 

conditional probabilities, where P(H = H1 | t1) represents the probability that there is a 

minefield given that the search showed what appears to be a minefield.  As successive 

iterations are made, these probabilities will further depend on the prior assumption with 

regard to the minefield state.  These conditional probabilities are data (and/or simulation) 

derived and thus provide a mechanism for adaptation in the decision process. This 

process presents a decision form that Jensen refers to as a myopic hypothesis driven data 

request (Jenson, 2001). The term myopic refers to the fact that, at each decision step, a 

choice is made based on maximizing the profit (where profit = benefit − cost) of 

performing that individual step, with no regard for the potential benefit of a future set of 

steps.  In other words, a search is made if the expected benefit is greater than the cost. 

 

The myopic hypothesis driven data request is solved by examining the expected profit of 

performing the next step in the search, EP(S), which is given by 

(15) 

SCHPVSEVSEP −−= ))(()()(  

 

where EV(S) is the expected value of the search, V(P(H)) is the value of the stated 

hypothesis, and CS is the cost associated with the search.  If this profit is positive, then a 

rational decision maker would perform the search.  Rather than explicitly computing the 

expected profit, the OpVal model presents the decision maker with the expected benefit 

of a next search, EB(S) = EP(S)−V(P(H)), which may then be weighed against the known 

costs. In this manner, the model eliminates the need to express both costs and benefits in 

compatible units, which is a subjective matter that is better performed by skilled decision 

makers than by a computer. 

 

To compute the expected benefit, the value of the added search must be quantified with 

respect to the simple binary hypothesis.  Added value may be expressed as a reduction in 

the variance (or uncertainty) of the value of the hypothesis statistic. In other words, the 

commander is interested in performing the search to reduce uncertainty in regards to the 

existence of an obstructing minefield.  For a hypothesis H with states {h}, the variance 

value function is given by 
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(16) 

( ) )()())((
2

hPhhPhHPV ∑ ∑−−=  

 

where both sums are taken over all of the potential hypothesis states.  For the minefield 

decision problem with the simple binary hypothesis, the value function for variance 

reduces to  

(17) 

)1())(( −= ppHPV  

 

where p is the probability of the H1 hypothesis, which is assumed to be complementary to 

the H0 hypothesis.  This expression reflects a variance reduction rather than a variance 

value.  Thus, in either case, a decrease in variance is sought.  The choice of a variance 

value function is specific to the intended mine hunting application, however, the general 

approach is applicable to any other value functions.  

 

The only other term to compute in the expected benefit of an additional search is the 

expected value of the search, EV(S), which is found by summing the values of the 

conditional search outcomes over all of the potential search results. For the binary test 

case (test T with results t1 or t2) of the mine hunting example, we have 

(18) 

)())|(()())|(()( 2211 tPtHPVtPtHPVSEV ⋅+⋅=  

 

Using the variance value function of equation (17), the value of an added search under 

the condition of a given test (search) result tj is given by  

(19) 

2 2

1 2 1 1( ( | )) (1 )j j j j jV P H t p p p p= − − − , 

 

where ( , )
ij i j

p P H H t= = . Since the values of p1j and p2 j are necessarily complementary, 

the following expression holds for the expected benefit of an added search: 

(20) 
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)1()()1()()1()( 222221111100 pptPpptPppSEB −−−−−=  

 

For this simple search test, the likely outcome of the test is given by the assumed 

hypothesis value going into that decision step.  Thus, given 90% prior certainty that there 

is a minefield, that is, p0 = 90%, the probability of a positive search outcome will be P(t1) 

=  p0, and the probability of a negative search outcome will be P(t2) = 1- p0.  This leads to 

the resulting value of 

(21) 

)1()1()1()1()( 222201111000 ppppppppSEB −−−−−−=  

 

If the search performance is not well-approximated by the prior decision p0, then it is 

appropriate to assume that the test results are uniformly likely, leading to 

(22) 

)1()1()1()( 22222
1

11112
1

00 ppppppSEB −−−−−=  

 

Equation (21) represents the reduction in uncertainty that can be anticipated by taking a 

new search. For other value function choices (other than the variance value function of 

equation (17)), the expected benefit of equation (21) has a different interpretation, but is 

still a predicted benefit. If the expected benefit of equation (21) is viewed as cost-

effective, then the next search is a rational decision choice.  Given values of p11 and p22, 

the benefits of added searches are readily evaluated. 

  

The values of p11 may be obtained from preceding experience with the data.  Recall that 

p11 represents the probability that there is an obstructing minefield given that we have a 

test result showing a minefield.  Therefore, if the value of certainty that there is a 

minefield increases x-fold for each new search (i.e., if the expected “resolution” increases 

by a factor of x), then a model of p11 is given by 

(23) 

x

p
  p

)1(
1 0

11

−
−=  
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Similarly, if the expected ability to remove false alarms improves by a factor of y for 

each pass, then 

(24) 

y

p
  p 0

22 =  

 

 

Finally, the new value of p0 for the next step is given by weighting the result of the test 

with the appropriate prior probability, 

 

(25) 

∑= )|(0 jthhPp  

 

 

for test result tj, so that 

 

(26) 
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Assuming that the values of x and y are given by x = y = 4 (for example), then the 

decision process could proceed as follows (assuming further that the test results are based 

on prior data): 

 

Step 0:  p0 = 0.5  � EB(S) = 0.1406 � search (sees mines, t1) � p0 = 0.88 

Step 1:  p0 = 0.88� EB(S) = 0.0615 � search (sees mines, t1) � p0 = 0.97 

Step 2:  p0 = 0.97� EB(S) = 0.0173 � search (sees mines, t1) � p0 = 0.99 

Step 3:  p0 = 0.99� EB(S) = 0.0044 � don’t search (low benefit) 

 

The sequence shows that the corresponding reduction in uncertainty in the estimate of p0 

(probability of minefield) has lowered to a point where the expected benefit of another 

search (even if it refines the field-view) is not enough to merit another search. If same 

sequence of steps is performed, but assume the first search doesn’t yield a positive field-

level search result, then the resulting process is as follows:  

 Step 0:  p0 = 0.5  � EB(S) = 0.1406 � search (misses mines, t2) � p0 = 0.13 
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Step 1:  p0 = 0.13� EB(S) = 0.0615 � search (sees mines, t1) � p0 = 0.78 

Step 2:  p0 = 0.78� EB(S) = 0.0961 � search (sees mines, t1) � p0 = 0.95 

Step 3:  p0 = 0.95� EB(S) = 0.0291 � search (sees mines, t1) � p0 = 0.99 

Step 4:  p0 = 0.99� EB(S) = 0.0076 � don’t search (low benefit) 

In this case the search value after steps 0 and 1 is still large because of two conflicting 

search results. The expected benefit (in terms of reduction of uncertainty) drops 

significantly to a point where no more searches are desired, only after a sequence of 

multiple non-conflicting search results have occurred. 

 

Seeing these expected benefits allows the commander to assess the relative merit of a 

new search, relative to prior benefits.  In particular, the first search has a benefit of 

0.1406.  After scaling the benefit numbers by this value, then the sequence becomes 

{1.00, 0.44, 0.12, 0.03} for the first step and {1.00, 0.44, 0.68, 0.21, 0.05} for the second 

step.  Searching would stop when the expected benefit from its corresponding step 

dropped below 10% of the initial benefit of a search, which is the assumed cost limit for 

this example. 

 

The process becomes more complicated for changed values of x and y.  Assume the 

ability to distinguish a minefield increases fourfold with a successful search when one 

exists (x = 4).  Furthermore, assume the ability to distinguish the non-existence of a 

minefield (ie: clearing out false alarms) only increases two-fold after a successful test (y 

= 2).  Then the expected search benefit sequences for cases with all successful searches 

(seeing minefield each time) and success after a single failed search are {1.00, 0.51, 0.14, 

0.04} and {1.00, 0.66, 0.70, 0.22, 0.06}, respectively. These values are consistently 

higher than the previous cases, showing that searching is more useful when clearing false 

alarms conflicts with enhancing detections.  The model is readily updated at each step by 

replacing p0 by a better estimate obtained from the actual search operation. 

 

A comprehensive OpVal choice model that covers a variety of other cost factors and has 

been implemented in spreadsheet form is available from the authors upon request.  
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DETAILED EXAMPLE 
 

 

If the two UUVs were traveling from left to right and each UUV was pinging cells to its 

left and its right repeatedly as it went along, each such ping would represent a time slice.  

An auto-adaptive process residing on the UUV would display a circle like those shown in 

the figure if and only alert values computed by the UUV exceeded a criterion.  The 

criterion would automatically compensate for changing background expectations along 

the way. 

  

Suppose that two UUVs are moving from left to right within the region shown in Figure 1 

at a rate of 6 km/hr.  Suppose further that every minute each UUV is sensing 1,000 cell 

slices from left to right, along a swath that is 500 meters wide (250 meters above and 250 

meters below the UUV).  In that case, each cell would be 0.1 meters wide ([0.1 meters ⁄ 

cell] = [6,000 meters ⁄ hour)] ⁄ [60 minutes ⁄ hour] ⁄ [1000 cells ⁄ minute]).  If each ping on 

either side produced 500 equally spaced intensity values (i.e., [MAX]
c  = 1,000) as reported 

in [1], then each corresponding cell would be 0.5 meters high ( 0.5 meters = [250 meters ⁄ 

ping] ⁄  [500 cells ⁄ ping]). Also, the minefield (assuming it to be rectangular) would be 

30,000 cells wide (i.e., [MAX]
t  = 30,000) and 4,000 cells high.  Then two UUVs 

proceeding 500 meters apart would be able to cover the top half of the field in 30 minutes 

and the entire field one hour, as in the above example.  Suppose further that the auto-

adaptive process computes four features per cell (i.e., [MAX]f  = 4), each of which has been 

formulated to have a high value if the cell contains a certain type of target and a small 

value otherwise, while compensating for background (Jannarone & Tatum, 2005). 

 

Regarding process stage operation in the Figure 1 case, the first stage would compute a 

number of feature values for each cell as simple functions of nearest neighbor window 

values.  For example, four feature functions have been derived with the Figure 1 

application in mind and reported previously (Jannarone & Tatum, 2005).  The second 

stage would compute background noise estimation mean values for each stage; the third 
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stage would compute regression weights; and the fourth stage would compute alert values 

based on estimated anomaly values. 

 

These results could have been obtained at the rate of a few second per thousand time 

slices on a conventional processor, easily keeping up with UUV data arrival rates.  For 

on-board UUV implementation, having only limited capacity microprocessors available, 

the process would be implemented on FPGAs operating independently of and much faster 

than central UUV microprocessors.  

 

All such formulations are based on reasonable error models, which can be used to 

produce straightforward expected values based on empirical data.  For example, 

empirical results from the previous study were used to compute expected values that 

resulted in the bottom Figure 1 graph.  Those results were then extended to generate 

expected values given more data, as shown in top two graphs, based on the following, 

well known sampling theory result: if results from independent samples are averaged and 

the process assumptions are satisfied, then four times as much sampling will double the 

accuracy, 16 times as much sampling will increase accuracy by a factor of 4, and so on. 

 
Referring to Figure 2, the three two by two tables on the left side of the figure contain 

expected hit and false alarm frequencies after one hour, three hours later, and 12 hours 

after that, under Option B.  Each corresponding table on the right side gives 

corresponding expected costs, obtained by multiplying each missed target and false alarm 

cost per entry that is provided in the top right figure by its corresponding cell size.  The 

numbers in the top right figure reflect much larger costs for not marking a cell that 

contains a mine than for marking a cell that doesn’t contain a mine, because hitting a 

mine unexpectedly could be disastrous while incorrectly concluding that a mine is present 

will only cause mine avoidance or mine clearing delays.  These estimated costs per entry 

could be modified in the field to reflect different situations, allowing them to estimate 

just how much expected missed target and false alarm costs would vary under different 

data gathering scenarios.  They could also be combined with data gathering costs, lost 
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time costs, and other costs as well, in order to determine which data collecting choice 

would be best under Option B or even whether to choose Option A over Option B. 

 

The global frequency of 120,000 cells in the left tables corresponds to the number of cells 

in the example (30,000 time slices per pass times from left to right time 4,000 rows), 

while the total number of targets (48) is based on the density of actual targets in the 

dataset from the original study (Jannarone & Tatum, 2005).  The hit and false alarm rates 

in the lower table were based on those found in the same study.  Hit and false alarm rates 

in the top two tables were based on assuming missed targets and false alarms would 

reduce as the square root of the number of passes, in keeping with the same independent 

sampling rationale that was outlined earlier. 

 

As mentioned earlier, the expected coverage regions shown in Figure 1 represent work in 

progress.  The regions may be constructed by fitting a non-negative function of the two 

region coordinates to observed deviance values.  The function would be one of a class of 

functions, including the bivariate normal distribution density, that are monotone with 

respect to a modal ridge along the trend curve that best fits the data.  In the bivariate 

normal case, the curve would be a straight line.  In the figure 1 case, the curve would go 

from the top left corner of the region the center right portion, in a slightly nonlinear way   

Expected coverage regions would then be constructed that covered all hit cells, along 

with areas outside the cells where hits have not been identified, based on prior 

information about target hit rates.  For example, the regions within the bottom Figure 1 

graph cover much larger areas than their counterparts within the top graph, because the 

hit rates for the one-hour case are much lower than the hit rates for the four-hour case, as 

shown in Figure 2. 

 

The OpVal model takes these mine likelihood regions as shown in figure 1 and convolves 

them with the expected characteristics of a notional minefield.  For instance, a uniformly 

distributed minefield of a certain spacing may be represented by a set of Gaussian 

“bumps” separated by such spacing.  This convolved geometric map is then converted to 

a single number by simple geometric averaging and this number may provide the 
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posterior value of minefield likelihood that is used as the prior (p0 in the OpVal notation 

of equation (25)) for the next search decision.  Similarly, the values of x and y in the 

OpVal  equations (23) and (24) are updated by examining a prior history of searches with 

similar mine hunting technology or by examining recent results in the search operation 

under consideration.  In this way the OpVal decision sequence allows the commander to 

weight expected future search benefit against future search cost.  
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              EXPECTED COST BASIS

       UUV Results

Mine Actuality: Marked Unmarked

Absent 1,000 0

Present 0 1,000,000

         EXPECTED HITS AND FALSE ALARMS   EXPECTED COSTS

             UUV Results        UUV Results

Mine Actuality: Marked Unmarked Totals Mine Actuality: Marked Unmarked Totals

Absent 20 119,999,932 119,999,952 Absent 20,000 0 20,000

AFTER ONE HOUR Present 32 16 48 Present 0 16,000,000 16,000,000

Totals: 52 119,999,948 120,000,000 Totals: 20,000 16,000,000 16,020,000

             UUV Results        UUV Results

Mine Actuality: Marked Unmarked Totals Mine Actuality: Marked Unmarked Totals

Absent 10 119,999,942 119,999,952 Absent 10,000 0 10,000

AFTER FOUR HOURS Present 40 8 48 Present 0 8,000,000 8,000,000

Totals: 50 119,999,950 120,000,000 Totals: 10,000 8,000,000 8,010,000

             UUV Results        UUV Results

Mine Actuality: Marked Unmarked Totals Mine Actuality: Marked Unmarked Totals

Absent 5 119,999,947 119,999,952 Absent 5,000 0 5,000

AFTER 16 HOURS Present 44 4 48 Present 0 4,000,000 4,000,000

Totals: 49 119,999,951 120,000,000 Totals: 5,000 4,000,000 4,005,000  
 

Figure 2.  Option B Cost Analysis 
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PROGRESS TO DATE AND EFFORTS REMAINING 
 

 

Many data-based results have already been obtained that could support the inference 

system described in this paper (Jannarone & Tatum, 2005; Smith & Jannarone, 2004; 

Jannarone, 1997). However, substantial further mine detection data could be processed in 

much the same way, in order to provide commanders and information officers more 

precise pictures with less guesswork.  The authors intend to continue analyzing available 

mine detection data toward that end.  The authors also hope that as war fighters begin 

using results like these and discover their value, commanders will support their further 

delivery, especially by working with Navy analysts to obtain more data. 

 

 

CONCLUSIONS 
 

 

This paper has introduced a system for guiding commanders in making optimal choices, 

in operations where situational awareness and information availability may change 

quickly.  An example has been provided where a commander must choose between 

launching a landing at once or taking the time to improve situational awareness.  Key to 

guiding the commander in making such decisions is (a) providing all available data in a 

form that will show how situational awareness would improve, and (b) being able to 

improve situational awareness as quickly as new information arrives.  A process has been 

described that has been designed to meet these two aims.  The system is based on an 

optimal value (OpVal) choice model and an auto-adaptive process for target detection.  

The OpVal model has been designed to weigh costs and benefits of acting at once versus 

gathering more information, and point toward optimal choices accordingly.   The process 

has been designed to deliver the essential simplicity, speed, compactness, robustness, and 

affordability to make the process feasible.  Process validation awaits processor testing 

and evaluation, planned to begin in the near future. 
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