
1

PixMin ADK (Analyst Development Kit) Manual

2

Contents

1. Introduction . . . 2

2. Use-case results . . . 6

2.1. Detecting caribou from aircraft imagery . . . 7

2.2. Detecting tortoises from trail camera imagery . . . 10

2.3. Detecting threats from fixed camera imagery . . . 12

2.4. Detecting obstacles from driverless car imagery . . . 13

2.5. Detecting oil field changes from aircraft imagery . . . 14

2.6. Detecting warm bodies . . . 15

2.7. Detecting underwater objects from drone imagery . . . 16

2.8. Detecting whales from airborne imagery . . . 16

2.9. Detecting desert tortoises from drone imagery . . . 17

2.10. Detecting ripples in water . . . 18

2.11. Detecting events from display imagery . . . 18

2.12. Classifying objects with template matching . . . 19

2.13. Correcting images for color variability . . . 19

2.14. Detecting flaws within rope inspection images . . . 20

3. Analysis methods . . . 21

3.1. Key analysis elements . . . 21

3.2. Use-case analysis details . . . 29

3.3. Analysis notes . . . 36

4. PixMin evolution . . . 41

5. Future Directions . . . 42

6. Conclusion . . . 42

Appendix A. Terms glossary . . . 43

Appendix B. ADK / PixC components . . . 51

Appendix C. Configuration metrics glossary . . . 54

Figures

3_1_analysis_elements_figures.pdf

3_2_1_caribou_detection_ figures.pdf

3_2_2_tortoise_trail_camera_detection_figures.pdf

3_2_3_threat_fixed_camera_ detection_figures.pdf

3_2_4_obstacle_detection_ figures.pdf

3_2_5_oil_field_management_figures.pdf

3_2_6_warm_body_detection_figures.pdf

3_2_7_underwater_detection_ figures.pdf

3_2_8_whale_detection_figures.pdf

3_2_9_tortoise_drone_detection_ figures.pdf

3_2_10_ripple_detection_figures.pdf

3_2_11_classifying_objects_figures.pdf

3_2_12_display_imagery_detection_figures.pdf

3_2_13_color_correction_figures.pdf

3_3_analysis_notes_figures.pdf



PixMin
Inside



ADK
Inside

3

1. Introduction

PixMin™ processing triages

imagery by detecting events

within streams of sensor data—

continuously, automatically,

and at the sensor processing

edge. By extracting only

informative snippets from

streamed imagery, PixMin

reduces transmission

bandwidth and analysis time by

orders of magnitude. PixMin

can process feeds from sensors

above or on land as well as on

or under water. Besides running

at remote sensor sites, PixMin

can run on cloud servers or at

interim nodes, connected either via wired or wireless networks.

We call our process “PixMin" because it uncovers useful information by filtering out

uninformative pixels. Reducing image pixels to essential information has become increasingly

important, now that small cameras and other sensors can produce thousands of images

affordably. Unattended cameras on drones and other platforms are now producing so many

images that finding events within them manually takes too much time. Saving and transmitting

all those images also takes too much storage and bandwidth. That’s where PixMin comes in.

This Manual describes your PixMin analysis development kit (ADK). (You will find this and

other bold font terms explained in our Appendix A Glossary.) The ADK will enable you to

configure, run, and analyze PixMin processor results. Your PixMin ADK runs multiple image

files as if they were run sequentially and in real-time by the

PixMin processor.

The ADK will enable you to preconfigure the PixMin processor

for a broad variety of automatic detection applications. You

will also be able to reconfigure installed versions of PixMin

remotely when field conditions or operational needs change.

Your ADK runs the use-cases within folders shown on the left.

Each use-case folder includes input image files, configuration

files, analysis files, and output files⎯all you will need to run

each use-case on your own. Once you have read this Manual,

you will be able to convert use-case configurations as you see

fit to run PixMin with your own datasets as well.

4

Before reading this Manual further, please open your PixMin_video.mp4 file located in your

0_ADK_video_files folder and then watch the video.

You will find ADK contents, including, use-case folders, summary reports, our PixMin video

presentation, descriptive slides, PixMin tool files, and a variety of image processing analysis

folders, summarized in Appendix B and loaded on your PixMin Computer (PixC). You will

also find Microsoft Office and other software preloaded on your PixC. As you will see, we have

them to configure and analyze PixMin use-cases. Once you have read this Manual, you will be

able to use PixMin as well as that other software.

The following Microsoft® Excel analogy may help explain the distinction between your PixMin

ADK use and PixMin processor use.

The term triage reflects what PixMin does. While medical triage identifies trauma victims with

especially urgent needs, PixMin triage highlights regions within images that may contain

especially important content. In evaluating a broad variety of image-based decision settings, we

have found that trained observers must usually make final detection decisions instead of relying

on fully automated methods to do so. For that reason, we have designed PixMin triage, like its

medical counterpart, to help experts use their time effectively rather than replacing them

Microsoft® provides Excel for analysis of spreadsheet data. Likewise, we provide

the PixMin ADK for analysis of historical images. Excel may also run

operationally for real-time data monitoring. Likewise, the PixMin processor runs

operationally for real-time imagery monitoring. For example, commodities traders

deploy Excel monitoring to receive stock price feeds, one line at a time. During

each time slice, Excel examines each line item and triggers automatic alerts to

highlight trading opportunities. Likewise, PixMin processes can continuously

receive camera imagery, one image at a time. During each time slice PixMin

examines each sector within an image and triggers automatic alerts to highlight

events of interest.

Before deploying Excel monitoring in this way, commodities traders configure and

evaluate Excel monitoring models for eventual operational deployment. For

example, trading analysts use Excel spreadsheets along with historical trading data

for “paper trading” to determine how real-time Excel monitoring should be

configured to trigger trading alerts effectively. Likewise, you will be able to use the

PixMin ADK along with historical imagery to determine how the PixMin processor

will trigger detection alerts operationally.

Analysts without programming language or machine learning (ML) backgrounds

can readily use Excel spreadsheets for futures trading analysis and to meet many

other needs. In the process, they refer as needed to Excel documentation. Likewise,

analysts without programming language or ML backgrounds can readily use the

PixMin ADK, referring as needed to our ADK documentation.

https://www.microsoft.com/en-us/microsoft-365/excel?ef_id=_k_CjwKCAiA6byqBhAWEiwAnGCA4EUMb7YYOMtQPFe_9N0ZIocUSkm4FW2zKlL-kAbfP1xM-azWk-SA6BoCCmAQAvD_BwE_k_&OCID=AIDcmm474qp8el_SEM__k_CjwKCAiA6byqBhAWEiwAnGCA4EUMb7YYOMtQPFe_9N0ZIocUSkm4FW2zKlL-kAbfP1xM-azWk-SA6BoCCmAQAvD_BwE_k_&gad=1&gclid=CjwKCAiA6byqBhAWEiwAnGCA4EUMb7YYOMtQPFe_9N0ZIocUSkm4FW2zKlL-kAbfP1xM-azWk-SA6BoCCmAQAvD_BwE
https://en.wikipedia.org/wiki/Stock_market_simulator

5

completely. We have designed PixMin to triage image data effectively so that higher level

decisions (by analysts as well as computers) can be more precise and efficient.

We have designed the ADK and written this Manual for straightforward use and understanding,

by those of you ranging from data analysis newcomers to image processing experts. We

encourage those of you newcomers to look check out background links that we have included in

this Manual just for you. You will find getting up to ADK speed to be straightforward. We

encourage those of you with advanced image processing backgrounds to compare PixMin with

popular artificial intelligence and machine learning (AI/ML) alternatives.

As you will see, the use-cases and examples we have selected are well-suited for edge-based

machine learning (EML) applications where PixMin works well. In these applications,

conventional AI/ML alternatives such as artificial neural networks (ANNs) may not work as

well because a) they typically require large training

samples that contain many target events in operational

environments, and b) they may not be as easy to

preconfigure or reconfigure under changing field

conditions. We encourage you to help find out which

machine learning alternatives work best for specific

event detection applications.

While many articles cite AI promise for sensor

processing at the sensory edge, conventional AI

comes up short. Effective edge-based AI must triage

massive streams of sensor data (e.g., camera imagery)

into nuggets of useful information efficiently,

adaptively, and deftly, in settings having low

available size, weight, and power (SWaP), along with

limited bandwidth. Instead, conventional AI machine learning (CML) requires cloud-based

computing. CML also relies on expensive, time-consuming analytics that requires large training

datasets. As a result, frequent CML re-training under varying field conditions may not be

feasible. In addition to precluding these four disadvantages, PixMin processing runs quickly

while meeting low SWaP requirements.

Since automated event detection may not be simple, we recommend weighing expected

automatic detection benefits against delivery effort and cost. Once you have read this Manual

and used the ADK with your own datasets, you will be prepared to evaluate automatic detection

return-on-investment (ROI) potential on your own.

We have set referenced terms in distinct fonts throughout this Manual. You will find key terms,

covered in the Manual Glossary (Appendix A), set in bold font. You will find PixMin

configuration metric names set in bold Italics font. You will find folder names, folder paths

and file names set in Italics font.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Artificial_neural_network
http://www.milsatmagazine.com/story.php?number=793839870
https://en.wikipedia.org/wiki/Edge_computing
https://www.iotforall.com/tactical-edge-computing-for-first-responders-and-military
https://www.iotforall.com/tactical-edge-computing-for-first-responders-and-military
https://en.wikipedia.org/wiki/DO-297
http://www.expouav.com/news/latest/using-drone-based-sensing-reduce-total-operating-cost-create-strong-roi/
http://www.expouav.com/news/latest/using-drone-based-sensing-reduce-total-operating-cost-create-strong-roi/

6

In the following sections, we will cover PixMin configurations ranging from simple to detailed.

In some straightforward use-cases such as river debris detection, cameras may be rigidly

pointed to regions of interest, enabling simple changes to be detected readily. In other

applications such as whale detection from airborne imagery, target events are hard to see

because they either show up rarely or they show up barely, or both. Even in the most detailed

use-cases, however, you will find that each PixMin configuration has a visually clear and

mathematically simple basis. Instead of being based on hidden layer configurations, which CML

routinely employs, PixMin configurations use visually clear and mathematically simple

templates. PixMin also looks for events within images based on mathematically simple

criterion values, which evaluate how closely templates match regions of interest within images.

In this Manual, we will fully explain how and why PixMin uses these configurations to detect

anomalies and events of interest. You will be able to see exactly why and how PixMin produced

precise or imprecise results by using analytics described in this Manual. By contrast, you may

not be able to see why CML models produce imprecise results, due to CML’s underlying hidden

layer nature that may only be understandable by highly trained specialists.

You will find your PixC ADK organized into three essential folders. The 1_ADK_Manual_files

folder contains this Manual along with figures that it cites and use-case reports that it cites. The

2_use-case_files folder contains one folder for each use-case. You will find each of these use-

cases covered in this Manual. The 3_configuration_and_analysis_files folder contains

configuration templates and analysis files. You will also find each of these files covered in this

Manual along with 0_ADC_videos folder, which contains PixMin_video.mp4 file. If you haven’t

yet opened that file and watched the video, reading the rest of this Manual will be easier if you

do so at this point.

Along with these ADK folders, you will find a shortcut on your PixC desktop called PixMin,

which is illustrated by our PixMin icon. When you click the PixMin icon a dialog box will open,

prompting you to search for and then click a specific use-case config file. Once you click that

config file, PixMin will run the use-case based on the config file contents. You will find details

explaining how PixMin runs each use-case throughout this Manual.

We have organized this Manual into two main sections. Section 2 shows how PixMin

configurations produced ADK use-case results, without explaining how or why we configured

PixMin to produce them. We have included details in Section 2 that will enable you to run all

use-case examples on your own, modify the use-case configurations if you wish to do so, and see

results that your modifications produce. Section 3 explains how and why we configured each

PixMin use-case. After reading Section 3, you will be able to modify the use-case files to

produce your own alternative PixMin configurations, based on a deeper understanding of how

automatic event detection works. You will also be able to see how your alternative results

compare. You will also be able to configure your own PixMin models to produce effective

results with your own imagery, independently and on your own.

Sections 2 and 3 reference three Manual Appendices. Appendix A describes each bold font term

in this Manual. Appendix B covers your PixC organization including all ADK folder contents

and installed PixC applications. Appendix C explains each ADK config file metric.

https://en.wikipedia.org/wiki/Artificial_neural_network

7

In Sections 2 and 3, we will introduce PixMin elements sequentially as they figure into each use-

case, which we have ordered from simple to detailed. That way, you will be able to see how

configuration elements fit in by example and in context. In addition, for general reference and if

you wish to jump ahead beyond example-based specifics, you will find each configuration

element and technical term listed in our Appendix A Glossary. Each glossary term will point

you to relevant specification details in Appendix B and Appendix C as well as relevant notes in

Section 3.3.

2. Use case results

In this section, you will see how PixMin configurations produced results

for each ADK use-case. If you open your ..\2_use-case_files folder, you

will see that it contains one folder for each of our ADK 13 use-cases.

Each of these folders has the same subfolder structure shown on the right.

For each use-case, we will describe the contents of all but its analysis

folder, which we will describe later in Section 3.

For each use-case, files in the config folder specify how PixMin processes its input images.

When you click the PixMin_ADK\PixMin icon, you will be prompted to find and open a

*.pxm.csv file in one of the use-case config folders. If you then click “run,” PixMin will process

the image files in the input_images folder and send results to the output folder. If you look in the

output_archive folder for any of the use-cases, you will see output files we have created

beforehand. We will be describing these archived files in this section and in Section 3.

We will begin describing each use-case by reviewing its corresponding report, which you will

find in the ..\Manual_cited_reports folder.

2.1. Detecting caribou from aircraft imagery

For this use-case, we will first explain how we configured PixMin to detect caribou. We will

then invite you to make your first PixMin run on your own. Along the way, we will introduce

the role each config folder file plays and how selected metrics within each file fit in. Before

reading this section, please check out the brief 2_1_PixMin_caribou_detection.pdf report. You

will see that PixMin detected caribou within a high resolution image covering a large region.

Please open the PixMin ADK Explorer shortcut on your desktop and then navigate to your

..\1_caribou_detection\input_images folder. Within that folder, you will find a file named

caribou_subimage.png. If you double click that image file, IrfanView will open and display the

image. You will see several caribou in the image. If you hover your pointer over any pixel

location, then click and hold, IrfanView will display your selected pixel’s (x, y) coordinate at

that point, or equivalently its (column, row) number. IrfanView will also display the pixel’s

three red, green, and blue (RGB) values at that pixel location. Each value is an integer between

0 for completely dark, to 255 for completely bright.

8

Next, on the IrfanView menu bar, please select Image – Convert to Grayscale. You will then see

the IrfanView grayscale rendering of the image. If you then hover over any pixel location, then

click and hold, you will see that all three RGB values are the same. IrfanView makes its

grayscale conversion at each pixel location by replacing each of its three RGB values with the

same value, which is a weighted sum of the three values. IrfanView does so by using a standard

set of grayscale weights (see your grayscale Appendix A entry for details). PixMin enables you

produce grayscale color feature values likewise, by entering those same standard weights in a

color_weights.csv file.

PixMin can read pixel color values and convert them likewise to grayscale likewise. Please open

the color_weights.csv file file for this use-case in its ..\config folder. You will see the standard

grayscale conversion weights in that file. By allowing you to enter these three values, PixMin

enables you to input grayscale values or others that may highlight specific colors of interest. As

you will when we describe other cases later, highlighting other colors can make PixMin

detection more precise.

During consecutive image processing, PixMin processes one input image at a time. Before that,

during preliminary configuration, PixMin verifies that each input image will be readable.

First, PixMin verifies that each input image has the same number of rows and columns as those

specified during configuration. If you right click your caribou_subimage.png file, then select

Properties, and then select Details, you will see that the image has 920 rows and 1,642 columns.

If you then open your ..\config\input_metrics.pxm.csv file for this use-case, you will see the same

number of rows and columns. If they were not the same, PixMin would display an error message

and terminate. Each PixMin input image must also have the right color depth (as explained in

your Appendix A image file entry). If not, PixMin will display an error message and terminate.

If an input image file cannot be read for any other reason, PixMin will also display an error

message and terminate.

We now introduce other config file metrics that apply to this us-case. If you want to learn about

other metrics along the way, you will find brief descriptions of them in Appendix A and details

in Appendix C. We share this caribou use-case first, because we have configured it to produce

an alert within the input image simply. We have merely configured this case so that if a

grayscale pixel value is sufficiently bright, that is, if a color feature value is high, then PixMin

will produce an alert. Otherwise it will not. We have done so by setting the simplest template

configuration among many possible PixMin configurations that could be used.

If you open the ..\template_values_level_1.csv file for this use-case, you will see that PixMin can

specify many Level 1 template types. (We will explain the Level 1 versus Level 2 distinction

soon.) Each type may have a specified number of rows and columns. In this case, we specified

one type with only one row and one column. We also set that corresponding template value to

one. If you open the ..\template_versions_level_1.csv file for this use-case, you will see that

PixMin can specify many template versions for each type. Each version can have its own

configured scale and rotation degrees value. In this case, we specified only one version for our

9

single specified type, and we set its (scale, rotation degree) values to (1, 0). As a result, we

configured PixMin with only one template type, template version combination.

PixMin generally identifies alerts within images by passing one or more template combinations

over each pixel location within the image. At each pixel location, PixMin computes a criterion

value that shows how closely the combination matches a region of interest (ROI) around the

location. In this case, we have configured each pixel ROI as simply the pixel itself. We have

also computed the criterion value as simply the color feature value itself. If you look again in

your ..\input_metrics.pxm.csv file for this use-case, you will see “Level 1 template matching

basis” on line 13, column A followed by a value of 1 in column B. As explained in column C

and further explained in Appendix C, this value has configured PixMin to compute criterion

values for each pixel as projection values. In this case, since only one template has been

configured with only one row and one column with a value of 1, the projection value that PixMin

computes for each pixel is simply its color feature value.

PixMin always performs Level 1 triage and optionally performs Level 2 triage as well. During

Level 1 triage, PixMin identifies image alert blocks that produce alerts. You will find an alert

block size of 32 specified for the caribou use-case in line 12 of its input_metrics.pxm.csv file.

Based that value for this use-case, PixMin looked for alerts within image alert blocks, which

were 32 pixels by 32 pixels in size throughout the image (with minor exceptions⎯see Section

3.3, Note 1). PixMin identifies Level 1 alerts within each block based on two cutoff values: a

pixel match cutoff value and an alert block cutoff value. If a template matching criterion

value for a pixel within a Level 1 alert block exceeds the pixel match cutoff value, PixMin treats

the pixel as a pixel level alert. If the resulting number of pixel level alerts within the block

exceeds the alert block cutoff value, then PixMin marks the alert block as a Level 1 alerted

block. In this case, we set the Level 1 pixel match cutoff value to 5.2, as shown in its

input_metrics.pxm.csv file. (We will explain how and why we set that cutoff value, among

others later in Section 3, where we cover configuration analysis.) Since we configured only one

simple template type in this case, we produced a Level 1 alert for a pixel whenever its color

feature value exceeded 5.2. In this case, we also set the Level 1 alert block cutoff value to 1. As

a result, PixMin treated a Level 1 alert block as an alerted block if only one pixel within the

block produced a pixel alert.

PixMin offers Level 2 triage as an option because it can add value to Level 1 triage for two

reasons. First, Level 2 triage can further triage Level 1 triage by using larger and more diverse

template combinations. PixMin can do Level 2 triage in this way without requiring much more

computing time, because PixMin performs Level 2 triage within only Level 1 alerted blocks.

Second, Level 2 triage results in output centering of alerted sub-images (which we call chips).

We used Level 2 triage in this case for both reasons. We configured PixMin to perform Level 2

triage, as specified in line 17 of its input_metrics.pxm.csv file. During Level 2 triage, We set

template_values_level_1.csv file settings and template and template_versions_level_2.csv file

settings to the same values as their Level 1 counterparts. We also set Level 2 cutoffs to values

shown in the input_metrics.pxm.csv file. As with the Level 1 cutoff settings, we will postpone

discussing how and why we set those cutoff values until Section 3 of this Manual.

10

At this point, you can make your first PixMin run as follows. First, if you double-click the

PixMin icon just inside your PixMin ADK folder, a dialog box will open. Next, if you click

Open in the dialog box and navigate to the ..\1_caribou_detection\config file, you will see an

input_metrics.pxm.csv filename. Next, if you select the filename and click Open, you will see a

dialog box with a Run button. Next, if you click the Run button, PixMin will run the caribou

use-case. After a dialog box displaying “Done” pops up, if you open your

..\caribou_detection_output folder, you will see a 0_alerts subfolder and an alerts subfolder.

The 0_alerts folder would include copies of input_image files if they had not produced alerts. In

this case, you will find that the 0_alerts folder is empty. Next, if you open the alerts folder, you

will see a chips sub-folder and a full sub-folder. If you select the full subfolder and double click

the caribou_subimage.png file, IrfanView will display the output alert map for this use-case.

You will see that each chip that PixMin detected is surrounded by a red box. As you will see,

PixMin detected nearly all caribou within the corresponding input image along with a few false

detections. If you then open the chips sub-folder, you will see one file for each chip that PixMin

detected. Each chip’s filename ends with the row location, followed by the column location of

the chip’s center pixel within its image file.

Chip files enable PixMin analysts and operators to examine only alerted blocks in full resolution

without having to look at other, uninformative image pixels. They also enable PixMin to produce

and transmit triaged alerts with much lower transmission bandwidth. In typical applications

where informative events occur rarely, transmission bandwidth along with operator examination

time can be reduced by a factor of 100K or more. Alert map files give PixMin analysts and

operators informative detection perspective. In this case, for example, we can readily see that

many false alerts occurred in a ravine where shiny rocks were prominent.

That concludes our first look at a PixMin use-case. In the remainder of this Section 2, we will

introduce the remaining use-cases in the same way, highlighting new configuration details as

needs arise. During each remaining use-case introduction, we will postpone describing analysis

details until Section 3. Along the way, if you wish to jump ahead to analysis details for this use-

case in Section 3.1, feel free to do so. Also, if you wish to modify configuration metrics along

the way and then make your own PixMin runs, feel free to do so (but please first read Section

3.3, Note 2).

2.2. Detecting tortoises from trail camera imagery

For this use-case, we will first explain how we configured PixMin to detect tortoises from trail

camera imagery. As before, we will then invite you to make a corresponding PixMin runs on

your own. Also as before, we will introduce configuration metrics that are new to you along the

way. Before reading this section, please check out the brief

2_2_Wildlife_trail_camera_photo_triage.pdf report. You will see that PixMin can reduce many

trail camera snapshots to only those containing useful information, greatly reducing snapshot

analysis time and required transmission bandwidth in the process. In this case, the trail camera,

facing the bottom of a culvert, was deployed to find endangered desert tortoise passing through.

11

Please navigate to your the ..\2_tortoise_fixed_camera_detection\input_images folder. Within

that folder, you will find 15 sequentially numbered *.png files. Please open files and check them

out using IrfanView. You will see that the first and last files among them show no animals.

Like these first and last files, nearly all trail camera image files show nothing of interest. We

configured PixMin to any target desert tortoise passing through without alerting any images that

did not include a target.

Next, please open your input_metrics.pxm.csv file inside the config folder for this use-case. You

will see that this configuration specifies masking. Briefly stated, masking enables PixMin to

ignore regions within images that will contain only uninformative clutter by masking them out

(see Appendix C, line 7 description for details). Briefly stated, differencing enables PixMin to

detect changes between color feature values in each input image and their homologous color

feature values in each corresponding diff folder image (see Appendix C, line 8 description for

details). In this case, we configured masking so that PixMin would ignore metadata at the

bottom of each input image. If you open any image in your ..\tortoise_detection\input_images

file you will see that the image has metadata on the bottom rows. If you then open your

..\tortoise_detection\config\default_mask.csv file, you will see that all of its top rows have values

of one except at the bottom rows, which have values of zero. PixMin uses that masking file to

ignore the input image metadata accordingly. PixMin masking ignores clutter in other ways for

other use-cases, as we will discuss later.

In the same input_metrics.csv file, you will also see that this configuration specifies

differencing. Briefly stated, differencing enables PixMin to base detection on pixels within

input images that have changed (see Appendix C, line 9 description for details). In this case,

PixMin looked for changes in all input image pixels relative to their corresponding pixels in a

..\tortoise_detection\diff\default_diff.png file, Since that image file contained no tortoise but

otherwise looked the same, PixMin readily detected tortoise pixels within input images. If

appropriate, we could also use differencing for this use-case auto-adaptively to make desert

detection robust. PixMin differencing works in these other, more subtle ways for other use-cases

as we will discuss later.

Other than specifying masking and differencing, our description for PixMin configuration in the

previously described use-case applies to this use-case as well, with only two exceptions. First,

we made the alert block size 512 for this use-case instead of 32 for the previous use-case so that

output chips could cover all tortoise pixels. Second, we set template values to minus one instead

of one so that PixMin would detect relatively dark pixels instead of relatively light pixels for the

previous use-case.

At this point, you can make your next PixMin run as follows. First, if you double-click the

PixMin icon just inside your PixMin ADK folder, a dialog box will open. Next, if you click

Open in the dialog box and navigate to the ..\2_tortoise_fixed_camera_detection\config file, you

will see an input_metrics.pxm.csv filename. Next, if you select the filename and click Open, you

will see a dialog box with a Run button. Next, if you click the Run button, PixMin will run the

use-case. After a dialog box displaying “Done” pops up, Please open your ..\output folder for

this use-case. You will see a 0_alerts subfolder and an alerts subfolder. The 0_alerts folder

12

contains copies of input_image files that did not produce alerts. As you can see, we configured

PixMin so that it would not produce an alert if an image did not include a full tortoise body.

Next, if you open the alerts folder, you will see a chips sub-folder and a full sub-folder. If you

select the full subfolder and check out its image files using IrfanView, you will see that PixMin

produces an alert map for every image that contained a tortoise, just as we had configured

PixMin to do. If you then open the chips sub-folder, you will see one file for each chip that

PixMin detected. As before, each chip’s filename ends with the row location, followed by the

column location of the chip’s center pixel within its image file.

That concludes our first look at your second use-case. As always, we will postpone describing

analysis details until Section 3. If you wish to jump ahead to details for this use-case in Section

3.2, feel free to do so. If you wish to modify configuration metrics along the way and then make

your own PixMin runs, feel free to do so (but please keep in mind Section 3.3, Note 2).

2.3. Detecting threats from fixed camera imagery

For this use-case, we will cover two examples. The first example shows how PixMin can detect

traffic being monitored on an isolated bridge. The second example shows how PixMin can

detect debris moving down a river. As always, we will then invite you to make a corresponding

PixMin runs on your own and we will introduce configuration metrics that are new to you along

the way. Before reading this section, please check out the brief

2_3_PixMin_threat_detection_from_fixed_cameras.pdf report. You will see that PixMin

effectively can use masking as well as differencing to detect threats precisely, robustly, and

auto-adaptively.

2.3.1. Bridge traffic detection

Please navigate to your

..\3_threat_fixed_camera_detection\3_1_bridge_traffic_detection\input_images folder. Within

that folder, you will find 12 sequentially numbered *.png files. Please open files and check them

out using IrfanView. You will see that the files show a motorcycle crossing a bridge. You will

also see that images wobbled during the sequence. We set up these images (see Section 2.4.3) to

include these wobbled images because fixed camera wobbling always occurs in practice.

Camera wobbling often can’t be seen, but it can often confound automatic detection unless dealt

with properly as we did in this case. We did so by masking out all image pixels except those

within a small region, as shown in the top figure within your

2_3_PixMin_threat_detection_from_fixed_cameras.pdf report. Next please open the

..\traffic\detection\config\mask\default_mask.csv file for this use-case and the locate cell

CNT1887. You will see that some cells in a region to the right of that point have values of 1 but

cells outside that region have values of zero. Setting up the file values in that way resulted in the

mask shown in the report.

Next, please run this use-case example like you ran the previous use-cases. Then, after you see

the “Done” dialog box on your desktop, please open the

..\bridge_traffic_detection\output\alerts\full\video_029.png file. You will see that PixMin

13

detected the motorcycle within the input_images\video 029.png file, within the red alert block

shown. If you open the output\alerts\full\video 033.png file, you will see that PixMin detected

the motorcycle in next input image likewise. If, within either output image, you click and hold

your mouse at the top left corner if its alert block and then drag your mouse to the bottom left

corner as you keep holding, you will see at the top of your IrfanView window that the alert block

size is 436. We chose that alert block size, as you will see in the ..\config\input_metrics.csv file

for this use-case, so that PixMin alerts could find the motorcycle, as well as larger vehicles,

within it.

Based on our previous use-case discussions up until now, some other configuration metrics for

this use-case should make sense at this point. However, please don’t be concerned because

many other metrics don’t yet make any sense at all. We intend to go over all of them in detail as

we introduce other use-cases later in this section and discuss them in detail later in the Manual.

2.3.2. River debris detection

Please navigate to your

..\3_threat_fixed_camera_detection\3_2_river_debris_detection\input_images folder. Within

that folder, you will find 17 *.png files. Please open the files and check them out using

IrfanView. You will see sequentially numbered images showing debris flowing down a river.

As with our traffic detection example, we masked out all image pixels except those within a

small region, as shown in the bottom figure within your

2_3_PixMin_threat_detection_from_fixed_cameras.pdf report. Just as in the traffic detection

example we set values in the , ..\debris_detection\config\mask\default_mask.csv file in keeping

with that bottom figure in the report.

Next, please run this use-case example like you ran the previous use-cases. Then, after you see

the “Done” dialog box on your desktop, please open the

..\river_debris_detection\output\alerts\full folder and check out its contents using IrfanView.

You will see that PixMin detected the large object, and only that large object when it passed

through the unmasked region, just as we had configured PixMin to do so.

Our comment at the end of Section 2.3.1 applies here as well, just as it applies to all remaining

Section 2 descriptions. We won’t repeat the comment further, but please keep it in mind.

2.4. Detecting obstacles from driverless car imagery

First, please check out the brief 3_PixMin_threat_detection_from_fixed_cameras.pdf report.

Please keep that report open to follow our next paragraph discussion. Next, open

2_4\obstacle_detection\input_images folder. Within that folder, you will find 65 input image

files. Next, open the last, construction_google_car_frame_0068.jpg file in that folder and keep

that file open as well. Next, run this use-case just you have run previous use-cases. when you

see the “Done” display, open the last alert map file in your ..\output\alerts\full folder and keep

that file open as well. Please note that your open input image file looks the same as the lower

14

left image in the report and your open alert map file looks the same as the lower right image in

the report.

We produced that alert map file, along with others in the output\alerts\full folder by using

masking, construction cone-like color feature weighting, and a construction cone-like template

values. If you open the ..\config\mask folder for this use-case, you will see that we created one

mask file for each input image (unlike previous examples where the mask folder contained a

single mask file for all input images). The picture on

right shows how PixMin used the last mask file to detect

construction cones in the last input_images file. The

gray values correspond to mask file values of zero and

the other values, showing input image values and their

alerts, correspond to mask file values of zero. (We will

describe how we made that picture later in Section

3.2.4).

If you open the color_weights.csv file for this example, you will see that we did not use

grayscale weighting as in our previous use-cases. Instead, we used a specialized set of statistical

contrast weights. As described later (see Section 3.3, Note 3), contrast color weighting

highlight pixels with positive weight values while suppressing pixels with other values. Since

the contrast weights in the color_weights.csv file for this example had only a positive value

corresponding to a red RGB color, they highlighted red, construction cone-like pixels in the

image while suppressing non-red values.

If you open template_values_level_1.csv file for this use-case, then select the template values,

and then select Insert-Charts-All Charts-Surface, you will see that the

template looks like the shape shown on the left. If you then select any cell

outside the template, fill the cell with “=sum(B5:J18)” and then click the

check mark (✓), you will see that the values sum to zero. That means our

template for this example is a statistical contrast template (see Section 3.3,

Note 4). By using this contrast along with a configured projection criterion,

PixMin highlighted all template-shaped regions within input images while

suppressing others. As a result, PixMin produced the precise cone detections

that you will see in your output folder alert maps.

2.5. Detecting oil field changes from aircraft imagery

Please check out the brief 2_5_PixMin_timely_asset_management.pdf report. If you look at page

2 of the report, you will see how PixMin triaged gross changes within oil pads and then

pinpointed changes within oil pads that showed gross changes. Next, please open your ..\use-

case_files\asset_management folder. Within that folder, you will see a

gross_oil_pad_change_detection sub-folder and a within_oil_pad_change_detection sub-folder.

Next, please run PixMin for the gross oil pad change detection use-case in the usual way. Once

you see the Done display on your output, please look at the alert map for the use-case in its

output\alerts\full folder. You will see that the alert map looks the same as Figure 1a) in the

15

report, with eight alerted oil pad chips. Next, please look in the input_images folder within the

within_oil_pad_change_detection sub-folder. You will then see in its ..\input_images folder that

we supplied only eight input oil pad image files corresponding to those that produced gross oil

pad alerts. Next, please run that use-case and then look at its eight output alert maps. Among

them, you will see alert maps corresponding to those shown in Figure 1b) and Figure 1c). For

each of these runs, we used differencing in ways that you will see in each of their diff folders.

As always, we will supply more details in Section 3.5. You will see, among other things, how

and why we used heat maps like the one shown in the right frame below, to detect oil pad

changes.

2.6. Detecting warm bodies

Please browse the ..\2_6\warm_body_event_detection.pdf report and keep the report open. We

produced the results shown on page 4 and page 6 of the report by first making a PixMin run with

input thermal image files to detect thermal human targets. During that run, PixMin detected the

thermal signature locations and wrote them to an output\alerts\chips\chip_locations.csv file, just

as PixMin does routinely (see Section 3.3, Note 5). After that run, we placed that

chip_locations.csv file into the config folder for this use-case. We then made a PixMin run with

input RGB image files that were matched with their thermal counterparts. In that run, which we

will ask you to repeat presently, PixMin used the ../config\chip_locations.csv file locations to

create RGB output alert maps and chips, just as we are about to ask you to do. Before doing so,

please open the ..\config\chip_locations.csv file for this use-case. As you will see, each line in

the file after the header line includes a filename, followed by a number that corresponds to the

center of a detected chip, followed by a number that corresponds to the center column of the

detected chip. Those line entries will determine the output of the PixMin run that you are about

to make.

Next, please run PixMin for this use-case. Then, after the run has ended, look in the use-case

output\alerts\full folder. You will see that one of the alert maps in that folder is the same as the

right side alert map on page 4 of the report. Next, look in the use-case output\alerts\chips folder.

You will see that some of the chips in that folder are the same as those shown in the report at the

bottom of page 6. Later, in Section 3.6, we will explain how we first ran PixMin with thermal

images and then ran PixMin just as you did to get these results. We will also explain how we

16

determined color weights for this example and template values for this use-case that produced

these results. For now, we will only direct you to the picture on the right below, which shows

what the thermal template_values_Level_1.csv file values for this use-case looks like. Using

analysis methods to be explained later, we found that this template distinctively

reflects the tops of human heads that were in the thermal images for this

use-case. To see the resemblance, please compare the template shape

on the right to the chip on the left, which shows what an input thermal

image above a human shape looks like.

2.7. Detecting underwater objects from drone imagery

First, please browse your ..\2_7\ PixMin_underwater_threat_detection.pdf report and keep the

report open. Next, please open your ..\ 7_underwater_object_detection folder. You will see a

transact_search subfolder with contents corresponding to Figures 2-3 in the report and a descend

sub-folder corresponding to Figure 5 in the report. In this section, we will invite you to run

PixMin within the transact_search folder, which we have preconfigured for you as with previous

use-cases, as you can see. If you check out the descend sub-folder, you will see that we have not

preconfigured it for you. We will invite you to preconfigure descend use-cases on your own and

using your own analysis skills. after we have prepared you to do so in Section 3.

Next, please run PixMin for the ..\transact_search use-case. While PixMin is running, please

open the use-case input_image folder and note that the image files in the folder correspond to the

63 images shown in the report. When the run completes, please note in the Done display that the

run time was around two seconds per image. We wanted PixMin to run that quickly in the case,

so that if we were running automatic detection on a drone, PixMin could keep with snapshats

taken at that rate. We used PixMin differential triage

functionality toward that end. We configured the Level 1 template

to triage each of the image files quickly by making it small. We

made the Level 2 template larger so it could validate the Level 1

detections effectively but also quickly because PixMin had

detected only a small number of alerted blocks during Level 1

triage. If you open the two template_values_level_*.csv files for

this use-case, you will see that the Level 1 template is much

smaller than its Level 2 counterpart. If you graph. their contents,

you that they look like the graphs on the right. We also used Level 1 and Level 2 scale

functionality to make PixMin run much faster than it would have run otherwise, If you open the

two template_values_level_*.csv files, you will see configured scale values that made PixMin

run 10 times faster during Level 1 triage and 15 times faster during Level 2 triage (as explained

in Section 3.3, Note 6). If look at the alert maps for this use-case, you will see that PixMin not

only quickly but precisely. PixMin detected all five target mines with no false alerts.

2.8. Detecting whales from airborne imagery

First, please browse your ..\2_8\ PixMin_underwater_threat_detection.pdf report and keep the

report open. Next, please open your ..\8_whale_detection use-case folder and begin a PixMin

17

run for the use-case. This run will take longer than others so far because the input image files

for this use-case have higher resolution and because precise detection for this use-case required

correlation criteria, which require more processing time. (Our delivered product for this use-

case took much less processing time, only about one second per image, because our operational

process used raw image processing and multi-core processing).

 As with underwater object detection, we configured

PixMin with to do fast, relatively coarse triage at Level 1, followed

by more granular Level 2 triage for this use-case. If you open your

template_values_level_1.csv file for this use-case, you will see that it

has the same shape as shon the right. We will cover what those

templates look like and how we determined them in section 3.8. If

you open your template_versions_level_*.csv files, you will see that

we configured scale values to produce faster processing as well, In

addition, you will see in the template_versions_level_1.csv file that we configured three rotation

angles for the template. As a result, PixMin was able to detect whales moving in different

directions.

If you look in the input_images folder for this use-case, you will see three sets of image triplet

files. Each triplet within its set was captured sequentially. The center image in the set contained

a whale chip but the images that were captured before and after it did not. If you look at the

alert maps for this use-case, you will see that PixMin detected each chip containing whales and

no others. (In configuring PixMin operationally, we found that we could not reach the perfect

precision shown for this use-case demonstration. Instead, we configured PixMin to produce

higher whale detection sensitivity (i.e., higher whale detection rates). Doing so resulted in lower

sensitivity (i.e., higher false detection rates), but we configured PixMin to present detections in a

way that still added significant value⎯see

3_1_automatic_event_detection_value_determination.pdf).

2.9. Detecting desert tortoises from drone imagery

First, please browse your ..\2_9\ PixMin_wildlife_drone_camera_triage.pdf report and keep the

report open. Next, navigate to the ..\9_tortoise_drone_detection\post-

flight_detection\input_images\alerts\full folder and then open the ortho_02_day_2.png file in the

folder. You will see that the file corresponds to frame c) on page 2 of the report. If you zoom in

to 50% using IrfanView and locate the region around (X,Y) = (1330,1130), you will see a desert

tortoise. If you will zoom pack out to 9.5%, you will see many rocks and bushes that look very

much like the desert tortoise⎯so much alike that we had to configure PixMin with special

attributes, which we will introduce presently. Before we do that, please run PixMin using the

input_metrics.csv file in your \post-flight_detection\config folder. Once your run has ended,

please open the ortho_02_day_2.png file in the resulting output\alerts\full folder and then

navigate to the same location where you saw the desert tortoise before. You will see a red alert

map box around the desert tortoise, just as intended. Next, open the output\alerts\chips folder

and then in Explorer, select View-Large icons. Among the 19 chip files shown, you will desert

tortoises in two of them. These were the only desert tortoises within the entire survey described

18

in the report. We configured PixMin in this case with sufficient sensitivity to detect both desert

tortoises. In order ensure sufficient sensitivity, we allowed an acceptable number of false

detections, as shown.

In order to achieve the necessary sensitivity to for desert tortoise in image files with so many

tortoise-like objects, we had to configure differencing along with precise pixel alignment. To

analyze the impact of differencing and pixel alignment options, we made several PixMin runs

with neither option, with both options, and with only differencing. You will find related files in

your ..\9_tortoise_drone_detection\pixel_alignment folder. We will ask you to make the same

runs and go over the results with you in Section 3.9. For now, please look at the picture below,

which shows how differencing with pixel alignment performed. The frame on the left shows a

chip covering a region that was photographed during the first drone flight. As you can see, that

frame does not show a tortoise. The frame in the middle shows a chip covering the same region

during the second drone flight. As you can see, that frame does show a tortoise. The frame on

the right shows left frame pixels and middle frame pixels that were differenced after pixel

alignment. As you can see, background pixel values do not stand out and tortoise body pixel

values do not stand out, but the tortoise shadow pixel values do stand out. Background pixels

don’t stand out because they didn’t change much (except for shadow and wind repositioning

changes). Tortoise pixel values don’t stand out because they look much like background pixels

(because tortoise shells have evolved to look camouflaged in that way). Only the shadow pixels

stood out as prominent difference values. We used shadow difference pixels accordingly to

detect tortoise changes. If you look closely at the left and center frames below, you will also see

that their pixels are not perfectly aligned. As we will demonstrate in Section 3.9, incorporating

PixMin automatic pixel alignment was essential for effective background clutter differencing in

this case.

2.10. Detecting ripples in water

First, please browse your ..\2_10\ PixMin_wildlife_drone_camera_triage.pdf

report and keep the report open. Next, run this use-case and look at the

output alert map. You will see that it looks the same as Figure 2 in the

report, except the alert map doesn’t show the ripple that wasn’t detected.

Next, look at the output chip files. You will see that they look the same as

those shown in Figure 4 of the report. (We will cover the report “discovery map” figure in

Section 2.11.) As you will see by checking out the two template_values_level_*.csv files,

19

PixMin detected ripples with the simple, one-dimensional template graphed on the right. We

could have configured two-dimensional templates like the one shown on the left. We did not do

that because it would have slowed down processing speed more than would have

been justified for this application. We could have also configured more sensitive

criteria such as correlation coefficients, but we did not do that for the same

reason. (To demonstrate resulting speed versus precision tradeoffs, we will invite

you to try these alternative configurations as an exercise in Section 3.10.)

Notably, even this simple one-dimensional template, which we configured for a fixed frequency,

phase, and amplitude, detected seven out of eight ripples with different phases, frequencies, and

amplitudes.

2.11. Detecting events from display imagery

Please browse your ..\2_11\PixMin_anomaly_detection_from_displays.pdf report and then run

the corresponding use-case. At this stage, you should be able to understand how the

corresponding PixMin configuration produced the output folder results.

2.12. Classifying objects with template matching

If you read your ..\2_12\PixMin_rocket_classification.pdf report, you will see that this use-case

is distinct from those described earlier because we used PixMin to classify events in addition to

detecting them. We used PixMin analytics to do so in ways that we will explain in Section 3.12.

For now, please note in your config folder for this use-case that we created several

template_values_*.csv files and several template_versions_*.csv files. We made distinct PixMin

runs based on different combinations of the files to produce output analytics for each

combination that we were able to tabulate, as shown in Figure 2 of the report. When used to

produce results like these operationally, PixMin will run through all template combinations

routinely and find the best fitting combination automatically, resulting in an automatic

classification decision for each input image. PixMin will be able to to do so for regions of

interest within images as well.

2.13. Correcting images for color variability

If you read your ..\2_13\PixMin_image_color_variability_correction.pdf report and then run this

use-case, you will see that the output folder images look the same as their counterparts in the

report. This use-case is distinct from those described earlier because we used PixMin to color-

correct input image files without either detecting or classifying events. When used operationally,

PixMin will color-correct each input image as a first step before PixMin does automatic event

detection as a next step. That way, PixMin event detection will be more precise, for reasons

described in the report. Although PixMin color-correction is easy to implement operationally,

the analytical basis for PixMin color-correction requires an explanation, which we will provide

in Section 3.13. For now, you can see from any two output folder image files that their colors

look the same. If you open both files in IrfanView and select Image-Histogram for both, you

will see that both histograms look the same. Finally, please note that when configured for color

20

correction, PixMin ignores color_weights.csv file, template_values_level_*.csv file and

template_versions_level_*.csv file entries.

2.14. Detecting flaws within rope inspection images

We have saved this use-case for last because it

deserves special attention. Among all use-cases we

have considered, visual inspection can most readily

meet the broadest event detection needs. If you

first look at

your..\2_14_FlawView_introduction.pdf report, you

will see that PixMin produced automatic event

detection results quickly and demonstrated broad

automatic event detection value. Accordingly, we spent extra time selecting a strong event

detection dataset for this use-case and producing analysis results, as explained in Section 3.2.14.

21

3. Analysis methods

In this Section 3, we will cover key analysis elements in Section 3.1, we will cover use-case

analysis details in Section 3.2, and we will include analysis notes in Section 3.3 that you will find

cited throughout this Manual.

3.1. Key analysis elements

PixMin analysis includes three key elements. For any prospective application, PixMin analysts

must:

a) Determine if and how PixMin could be valuable.

b) Obtain datasets that could be used to determine PixMin value.

c) Configure PixMin to determine optimal event detection value.

Unless PixMin has potential to add significant value, and unless appropriate datasets are

available to determine PixMin value, configuring and evaluating PixMin will not be worth the

effort. In that regard, evaluating elements a) and b) constitutes essential PixMin utility triage,

which should routinely be performed beforehand. We have introduced elements a) and b) in two

reports that you will find in your ..\Manual-cited_reports folder, entitled

3_1_PixMin_added_value_potential_determination.pdf and 3_1_use-

case_evaluation_imagery_desirables.pdf. Please read both reports before continuing with this

section.

We begin this section by describing slides that illustrate key PixMin configuration elements.

Please find and open the file entitled 3_1_analysis_elements_figures.pdf. Slide 1 shows the PixMin

operational sequence, beginning with preliminary configuration. During configuration, PixMin

reads and parses config folder file contents, identifying each input metric along the way. Based

on input metric values, PixMin sets up internal storage and computes internal metrics as

necessary for either continuous image processing or color alignment. Nearly all PixMin runs

in your ADK, and in practice, do not perform color alignment. We will cover color alignment

later in this section.

If continuous image processing as usual has been configured, PixMin parses all other folder

metrics during preliminary configuration, as shown in slide 1. PixMin then proceeds with

consecutive image processing, one input image at a time, as shown in the the slide 1 loop. As

shown by the dashed boxes in the figure, PixMin may or may not perform differencing, masking,

or analysis during concurrent information processing. In Section 2.2, we introduced some of the

operations shown in slide 1. We will give detailed descriptions of all such operations in the

remainder of this Manual, starting with these remaining slides.

Slide 2 shows config folder contents, including snippets from some configuration files that we

introduced in Section 2. Among those files, the only file we haven’t yet introduced is the

config_errors.txt file. PixMin produces that file when it has found errors in configuration file

22

syntax during preliminary configuration. PixMin also displays all such errors in desktop dialog

boxes when they occur.

PixMin runs after being configured by the ADK. After configuration, PixMin runs

consecutively, either by processing each input folder file during ADK use-case runs or by

processing input images during continuous operation deployment. During continuous

deployment, the “Perform analysis” blocks shown will not be in effect because PixMin will have

already been configured to operate quickly and precisely. Slide 3 shows one continuous

operation deployment example corresponding to our Detecting Warm Bodies (Section 2.6) use-

case. Once PixMin has been configured beforehand, PixMin gets triggered during consecutive

time slices. At the beginning of each time slice, PixMin receives pixel data from an input image.

At the end of each time slice, PixMin produces alerts only if they have been detected within the

image. PixMin then stands by to receive pixel data from the next image at the beginning of the

next time slice, and so on.

Slide 4 shows ADK use-case organization. As you have seen in Section 2, the ADK use-cases

organizes use-cases within corresponding folders, reports, and Section 2 sub-sections. We have

organized ADK use-case analysis descriptions likewise in Section 3.3 below. Slide 4 also shows

use-case sub-folder organization. Along with config, input, and output folders, which we have

already introduced, each use-case includes an analysis and an output_archive folder. The

analysis folder for each use-case describes how we set up the use-case run as well as a series of

use-case runs we made during configuration analysis. The output_archive folder for each use-

case includes output_* sub-folders from each of its configuration runs. The highest numbered

output_* sub-folder for each use-case contains the same output for the use-case that we asked

you to produce in Section 2. We will cover analysis folder details for each use-case in Section

3.3 below.

Slide 5 shows how input image file color values are organized within image files. Within each

file, PixMin reads color RGB value triplets consecutively. As we introduced in Section 2.1,

PixMin converts each triplet to a color feature value while reading the image during

consecutive image processing. Slide 6 shows how PixMin organizes resulting color feature

values into one value per pixel.

Slide 7 shows how PixMin organizes Level 1 alert blocks and output chips. For some

configurations such the one shown, alert block size does not evenly divide the number of input

image rows and columns. As a result, PixMin makes boundary alert block sizes smaller as

necessary to cover all input image pixels. PixMin always produces output chips that are the

same size as configured level alert block sizes. If PixMin finds alerts within boundary alert

blocks that are smaller than alert block sizes, PixMin outputs chips with boundaries shown by

dashed lines in the figure to keep them the same size.

Slide 8 shows input and output folder contents for the whale detection use-case. In this case,

PixMin output included alert maps, alerted chips, and a chip_locations.csv file as shown. As

introduced earlier, and as we will explain further below, PixMin may use output

chip_locations.csv files as input config folder files during analysis operations. For the same

23

whale detection use-case, slide 9 shows alert block boundaries and a template graph for Level 1

on the right, as well as alert block boundaries and a template graph for Level 2 on the left.

Slide 10 shows some templates that we have used in our 13 use-case configurations. As you can

see, most of these are statistical contrast templates, for reasons we have introduced earlier and

will explain in more detail below. You will find corresponding templates files in your

..\configuration_files\template_values_files folder. Slide 11 shows how the rotation and scale

settings in your template_versions_level_*csv files affect template matching. The top, left frame

shows that when they are 0 and 1, respectively, template feature values at each pixel point in an

image are computed around each Region of Interest (ROI) pixel location by comparing each

template_values_level_*csv file value with its homologous ROI value centered at that location.

The top right figure shows how ROI values are matched with template values with a scale factor

value of 1 and a rotation angle of 45 degrees. The two bottom frames show how ROI values are

matched with template values when scale values are greater than one. Using different rotation

and scale values in this way enables the same template to be matched to a variety of image

orientations with a variety of sizes, as shown. Using scale values greater than one also allows a

shape specified by a small size to be matched with larger sized objects, with taking any more

processing time than matching the shape to a small sized object would take.

Slide 12 shows how template regions of interest (ROI) coverage can go beyond image

boundaries. PixMin creates frames around image images that enable template matching values

to be computed at all image boundary locations. Slide 13 shows how PixMin uses mirroring to

compute frame pixel values.

Slide 14 shows how PixMin uses masking and differencing to highlight changes of interest with

high sensitivity by using change detection as well as masking. Slide 15 shows how pixel

alignment can make differencing even more sensitive when pixel location differences between

input_images files and corresponding diff file images can otherwise confound actual changes.

As shown in the right Slide 15 file, pixel alignment results in some edge pixels being masked,

because some pixels at the edge cannot be paired after pixel alignment. Slide 16 shows how

PixMin uses crosshair matching to align input_images files with corresponding diff folder

folder files.

Slide 17 shows how image colors varied while a drone was capturing the images during repeated

flights. The color variation was caused by varying sunlight and other ambient conditions. Color

variation like that shown in the slide significantly reduces sensitivity, especially when change

detection is configured, because changes in color can obscure subtle changes that PixMin must

detect. Slide 18 shows that PixMin removes color variation by making image color cumulative

distributions in input images the look same as the color cumulative distribution in a base input

image. As result color-aligned histograms all look the same and color variation does not affect

detection sensitivity.

As image processing analysts, we must configure automatic event detection solutions that

involve essential tradeoffs. One significant tradeoff is between processing speed, weight, and

power (SWaP) on the one hand and detection precision on the other hand. If we were to ignore

SWaP constraints completely, we can always envision solutions that would improve simply by

24

having an unlimited number of sensors looking for events over an unlimited period of time.

Alternatively, if we were to use sensors and processors with negligible SWaP profiles, such as

low resolution cameras taking only a snapshot every decade, we would also wind up with

negligible event detection precision. With our analysis elements slides so far, we have

introduced analysis components including color features, specialized templates, template

features, change detection, and masking, which PixMin uses to produce both sensitive and

efficient event detection, but only up to a point. With our remaining analysis elements slides, we

will describe how these components can be thoughtfully used to produce highly sensitive event

detection, while meeting operationally essential SWaP constraints. The most tangible constraint

among these that we keep in mind is processing speed. For all of our use-cases, we have

configured solutions that could find events within images arriving every few seconds or more

often, on edge-based processors.

Slide 19 shows how speed figures into automatic event detection, in terms of PixMin computing

consecutive image processing. As shown, after preliminary configuration, for each input image

PixMin must first input images and convert them to feature values. These initial steps require

only sub-second processing time on modern, low-SWaP processors including laptops and more

specialized computers. Once these initial steps have been completed, however, PixMin must

take for more processing time working through the six nested loops shown. Unless PixMin has

been carefully configured, traversing these loops can require so many calculations completing

them all would not be possible on any low SWaP processor. The example shown, based on the

whale detection use-case image size, reasonable template sizes, and a reasonable number of

template combinations is one case in point.

As you have seen in Section 2, we have configured our use-cases so all of them require orders-

of-magnitude fewer calculations than those shown in the Slide 19 example. Instead, we have

used much smaller templates and many fewer template combinations than in the example. Our

Level 1 configurations have been especially frugal, because Level 1 processing requires

traversing every input image pixel. Our Level 2 configurations have been less frugal, because a)

Level 2 processing requires traversing only alerted blocks that have been triaged during Level 1

processing, and b) Level 1 alerted blocks typically have orders-of-magnitude fewer pixels than

input images. In addition, we have routinely configured template scaling factors, which reduce

processing calculations by configured scaling factor values for a template times the template’s

dimensionality. We also configured differencing and masking, both of which make simpler

templates more effective. We have also configured less computing intensive criteria like sums

of absolute differences and projections, instead of more computing intensive alternatives like

correlation coefficients. We have used all such faster alternatives whenever they have produced

satisfactory precision. Perhaps most effectively, we have carefully determined template

configurations that are target-shaped as well as robust like statistical contrast templates to

ensure both high sensitivity and high specificity.

Slide 20 shows how we configured the whale detection use-case to produce both acceptably high

precision and acceptably high processing speed. First, we determined the effective templates

shown (see Section 3.2.8 for details). Second, we configured only a one-dimensional Level 1

template. Doing so substantially triaged pixels to only those within Level 1 alerted blocks.

Third, we used template version scaling, which further reduced processing speed.

25

Beyond configuring PixMin to run efficiently for this use-case, we have designed PixMin to run

efficiently in several ways. For example, as we introduced in slide 11, PixMin takes no longer to

evaluate criterion values for a template’s scale value, however large, that for evaluating any other

scale value, even though a large scale values’ ROI will be correspondingly large. We have

included many other powerful speedup features, not covered in this manual. You will be able to

measure their effectiveness are by comparing PixMin processing speed for specific use-cases

with that of alternatives such as OpenCV template matching.

The remaining analysis elements slides cover PixMin analysis output files and tools. Slide 21

shows PixMin selected analysis output folders and files from our whale detection use-case

configuration. Along with normal output structure, PixMin will always produce Level 1 analysis

like that shown when you configure analysis option a, b, or c. PixMin will do so for all

configured template combinations, producing alerts folder heat maps like those shown.

Looking at heat maps in your analysis chips folders will help you determine which template

combinations detect selected targets specified in your chip_locations.csv file with the most

sensitivity. Looking at heat maps in your analysis full folders will help you find template

combinations may improperly classify regions of interest as targets due to low sensitivity.

Slide 22 shows, for the whale detection use-case, how its chip_locations.csv file determined its

analysis output folder content when analysis option b was selected. As you can see, PixMin

produced image heat maps in the 0_alerts folder when an input image file had no corresponding

chip_locations.csv file entry; PixMin produced image heat maps in the alerts/full folder when an

input image had one or more chip_locations.csv file entries; and PixMin produced chip heat

maps in the alerts/chips folder for every chip location that was specified in the

chip_locations.csv file. As you can also see, PixMin also produced a

level_1\analysis_statistics.csv file, which we will cover next.

Whenever we configure analysis option a, b, or d, PixMin always produces an

analysis_statistics_level_1.csv file. To help make best use of the file contents, we often convert

it to a *.xlsx file, like the 1a_analysis_statistics_level_1_example.xlsx file that you will find in

your ..\3_configuration_and_analysis_tool_files\analysis_tool_files folder (see Appendix B).

Before going into details on that file’s contents, please recall the following configuration details

from Section 2.8, whale use-case description.

➢ The use-case has input nine image files. Three of them labeled config_snippet_1b.jpg,

config_snippet_2g.jpg, and config_snippet_3b.jpg have ROIs with whales. The other six

do not.

➢ The use-case has one Level 1 template type and 12 versions for that type based on six

rotation angle values times two rotation scale values.

➢ The Level 1 use-case is a one-dimensional splash detector and the Level 2 template is a

two-dimensional back detector.

With those use-case details in mind, please keep slide 22 open, because we will be referencing

the use-case chip_locations.csv file contents and input_image folder contents next. Now please

open your..\1a_analysis_statistics_level_1_example.xlsx file. You will see three tabs in the file.

https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html

26

Slides 23 through 26 contain excerpts from those tabs. Slide 23 shows a screen dump from the

“from_ADK” tab. We made this tab by copying and pasting the contents into an output

analysis_statistics_level_1.csv file from a whale detection analysis run into it. The ADK version

of PixMin wrote each line of the analysis_statistics_level_1.csv file as it was created during the

analysis run, in a sequence that isn’t analyst friendly. After copying and pasting its contents, we

made analyst-friendly counterparts to it by first highlighting the header line as shown using

Excel’s Format Cells option. We then used Excel’s View-Freeze Panes option to enable

scrolling down the tab while maintaining the header line at the top. Even so, the “from_ADK”

tab analysis makes little immediate sense, as you can see.

To make more sense of the Level 1 statistics for this example, we copied the “from_ADK” tab

into a new tab. We then we sorted the new tab’s contents and named it

“sorted_Chip_Row_then_Image.” Slide 24 shows a screen dump from the top of that tab. The

slide shows Total analysis statistics for each of the nine input images. We have highlighted the

lines corresponding to images that included whales. For each image, the tab has one line for

each of its Level 1 template versions. Each of these lines has a “# Alerts” entry, which is the

number of Level 1 pixel alert count value that occurred within the line’s image, template

version combination. As you can see, the pixel alert counts were highest within images that

contained whales, as it should be. Each of these lines also has a “Max Val” entry, which is the

maximum Level 1 pixel alert value that occurred within the line’s image for that template

version. As you can also see, the maximum alert values were also highest within images that

contained whales, as it should be. The Total values pointed to other points for potential further

analysis. For example, images 1a, 1c, 2a, and 2c had zero alert counts but images 3a and 3c did

not. That means PixMin found some ROIs within images 3a and 3c that may have been target-

like. Looking closely at those ROIs, starting with image heat maps, might help determine

alternative template combinations with better specificity.

Slide 25 shows a screen dump from the bottom of the same tab that we showed in slide 24. The

slide shows Level 1 statistics for the chips that were specified in the chip_locations.csv file,

shown in slide 22. For each chip location and template type line, you will find its number of

alerts. As for Total image entries in slide 24, the “#Alerts” entries shown here are higher within

the five chips containing whales than in the four chips containing no whales. Each line’s Hit

Ratio entry is the ratio of alert counts within its chip to the alert counts for pixels in the line’s

entire image other than pixels within chips for that image specified in the chip_locations.csv file.

Entry values of “INF” mean that its divisor is zero, or equivalently that alerts only occurred

within specified chips. Since that was the case for all snippet 01b entries, that means that no

false alerts whatsoever were found an any its 4912x7360 pixels, other than its specified 513x513

chip pixel⎯a good indication that within-image false alerts may be unlikely. As you can see,

the same pattern of promising results was held for snippets 02b and 03b as well. Also, the Hit

Ratio values were higher for the snippets containing whales than for others. Likewise, the “Max

Val” values were higher for snippets containing whales than for others.

Comparing template versions within images in slide 25 can also add analysis insight. We see by

comparing them within snippet 01b, for example, that template version 0, corresponding to a

horizontal white spike template, had the most hits, version 1, corresponding to a 45 degree

template had the second most alerts, and version 2 corresponding to a 90 degree templated had

27

only 1 hit. That makes sense because the sippet 01 whale was moving in a vertical direction. If

we were concerned about processing time, we might look do further analysis to see if all versions

were necessary by making another Level 1 run with only a zero degree version and a 90 degree

version. We might try larger scale factors with shorter Level 1 templates to see if they work as

well.

Besides determining how well PixMin templates perform, ADK statistics can also help

determine pixel alert and alert count cutoff values as shown in slide 26, which is a screen dump

of the “cutoff_highlights” tab in your 1a_analysis_statistics_level_1_example.xlsx file. As

shown in the top of slide 26, we configured that tab with an “alert count cutoff” cell value. We

also configured each “# alerts” value below it to contain a total count for each chip, summed all

over each of its three template version alert counts. We also set excel Conditional Format for

each of those values so that they would be pink if they were at or above the “alert count cutoff”

value and green otherwise. Doing so allowed us to find a suitable “alert count cutoff” value

small enough to produce Level 1 alerted blocks containing targets but large enough to produce

as few Level 1 alerted blocks containing no targets. We find such suitable alert count cutoff

values routinely in this way while configuring use-cases as you will see in Section 3.2 below.

Turning next to Level 2 templates, please first recall the following Level 2 details.

a) PixMin performs Level 2 triage only on Level 1 alerted blocks.

b) PixMin creates Level 2 alert blocks only within Level 1 alerted blocks.

c) Level 2 alert blocks sizes must evenly divide Level 1 alert block sizes. As shown in slide 9

for the whale use-case and in slide 20, which shows its input_metrics.pxm.csv file contents,

we configured 81 57×57 Level 2 alert blocks to be evaluated within each 513×513 Level 1

alerted block.

d) Level 1 templates are compared to their ROIs centered at each pixel within each Level 1

alert block, even when the ROI falls outside the alert block. For example, we showed how

PixMin can evaluate ROIs outside alert blocks earlier in slide 12. Likewise, Level 2

templates are compared to their ROIs centered at each pixel within each Level 2 alert block,

even when the ROI falls outside the alert block. For example, as you can see in slide 9 for

our whale detection use-case, the Level 2 template for is larger than Level 2 alert block size.

Even so, PixMin compared that template to every ROI of the same size within every Level 2

alert block.

e) Just as Level 1 triage detects events within Level 1 alert blocks like those shown in the large

slide 9 grid, Level 2 triage detects events within Level 1 alerted block, like the one shown in

the small slide 9 grid. Level 2 pixel alert count cutoff values are evaluated within Level 2

alert blocks rather than Level 1 alert blocks.

f) Level 1 triage can find multiple alerted blocks within an image, but Level 2 triage can find

only one alerted block within each Level 1 alerted image. Level 2 triage finds the Level 2

alert block within each Level 1 alerted block having the highest pixel alert count value.

PixMin then classifies the Level 1 alerted block as a Level 2 alerted block if that highest

pixel count equals or exceeds the specified Level 2 alert count cutoff value.

g) As shown in slide 9, we made one only one Level 2 template to detect whale backs. To make

it cover different whale sizes and orientations, we configured 12 versions of that type to

detect whale backs at six different angles and with two different sizes.

28

With a) through g) in mind, please open your ..\1b_analysis_statistics_level_2_example.xlsx file

in your ..\analysis_tool_files folder (see Appendix B). You will see three tabs in the file, just as

you saw earlier in its Level 1 statistics counterpart. The first “from_ADK” tab contains copies of

the lines in an analysis_statistics_level_2.csv file that the ADK generated during a whale use-

case analysis run. Slide 28 shows excerpts from that tab. As with its Level 1 counterpart, to

make more sense of that tab we copied its contents into a new tab and then sorted its contents. In

this instance, we sorted by “Type” in Column K and then by “Image” in Column A. We then

named the new tab “sorted_Type_then_image.” Slide 29 shows excerpts from that tab. The

“Level 2 All” label at the end of each line in the tab means that the statistics on that line are

based on all 81 of its corresponding Level 2 alert blocks. For example, the orange colored

entries in the “# Alerts” column give the number of Level 2 alerts that PixMin detected in all 81

alert blocks for snippet 2b, broken down by the Level 2 template versions (six rotation angles

times two sizes). If you compare those 12 entries to the 12 entries below corresponding to

snippet 3a, you will see that the snippet 2b counts are much higher. That is as it should be

because snippet 2b included a whale image but snippet 3a did not. You can verify that the came

results held for all snippets in the tab, showing a clear path toward using the Level 2 template to

triage only snippets containing whales. If you take a closer look at slide 29, focusing on the six

target snippets and keeping the nature of the 12 template types in mind, you will see that

templates with the same size and orientation as their whale ROI counterparts had the highest

Level 2 alert counts, just as expected.

Next, please look at slide 30, which shows “Level 2 Block” statistics instead of the “Level 2 All”

statistics in slide 29. Each entry in this slide shows the Level 2 alert block location within its

corresponding Level 1 alert block where the highest Level 2 alert counts occurred as well as how

many alerts occurred in that block. The hit ratios for each entry are computed based on the

entry’s template version, just as in the Level 1 case, except these hit ratios are computed only

within its corresponding Level 1 alert block. These entries show the relative impact of each

template version on detection within the Level 2 alert block having its highest counts.

Next, please look at slide 30, which is a screen dump of your “cutoff_highlights” tab in your

1b_analysis_statistics_level_21_example.xlsx file. As shown in the top of slide 30, we

configured that tab with an “alert count cutoff” cell value. We also configured each “# alerts”

value below it to contain a total count for each chip, summed all over each of its three template

version alert counts. We also set excel Conditional Format for each of those values so that they

would be pink if they were at or above the “alert count cutoff” value and green otherwise. Doing

so allowed us to find a suitable “alert count cutoff” value small enough to produce Level 2

alerted blocks containing targets but large enough to produce as few Level 2 alerted blocks

containing no targets. We find such suitable alert count cutoff values routinely in this way while

configuring use-cases as you will see in Section 3.2 below.

Turning next to Analysis Tools, slide 31 shows input and output to our

3a_feature_array_reorienting_tool_257x257.xlsx file, which you will find in your

..\3_configuration_and_analysis_tool_files folder. We routinely align Regions of Interest

containing targets so that we can make a single templates and template versions that will cover

all of them. We do so by first selecting color feature values within ROIs containing targets.

29

Such targets often have different sizes and orientations. We then reorient them so that their sizes

and orientations match more closely. We then choose similar patterns within them and then

construct templates that cover all of them accordingly. For example, the reorienting tool may

transform the input chip values shown on the left side of slide 31 to output chip values that are in

line with other target chip values. Besides allowing target color feature values to be input, the

tool allows scale and rotation values to be input, resulting in output color feature values like the

one shown on the right side of slide 31. As you can see in the folder, our tool kit includes one

reorienting tool for smaller feature sizes and another reorienting tool for larger feature sizes.

Slide 32 shows how you can build mask files using our 3a_mask_region_building_tool.xlsx file,

which you also find in your ..\3_configuration_and_analysis_tool_files folder. We used that

file extensively to build masks that have rectangular inner borders, but sometimes have internal

borders with more sides, such as in our Asset Management use-case (see Section 3.2.5 below).

In the same folder, you will also find a 3b_mask_region_insertion_tool.xlsx file, which enables

smaller built masking files to be inserted within larger masking files.

Slide 33 shows some IrfanView options, which we use routinely to examine PixMin input and

output image files as well as set up input image files, as you will see in Section 3.2. Slide 34

shows how we convert input HDFView *.h5 files, which are output from the ADK when

analysis option b is selected, to spreadsheets, which can be pasted into Excel and files like our

color feature reorienting tool for further analysis. We intend much more HDFView use

eventually to meet other future needs (see Section 4).

Slide 35 shows the layout for 5_drone_flight_plan_coverage_calculator.xlsx file, which you will

find in the same tools folder. We have used this file extensively to design drone flights that will

provide necessary camera image file coverage, resolution, snap-shot frame rate and other settings

for producing optimal PixMin input for automatic ground-target event detection.

3.2. Use-case analysis details

This section describes the same use-cases as Section 2 in that same order, but with more focus on

why and how we configured PixMin for each use-case. Just as in Section 2 where we introduced

configuration files and metrics sequentially as they figure into each use-case, we will introduce

analysis elements sequentially as they figure into each use-case sequentially in this section. But

first, we will outline the analysis sequence that we use routinely and recommend strongly.

For nearly all use-case analyses, we have routinely gone through the following standard analysis

sequence for each use-case.

1) Determine substantial automatic event detection value. As explained in our

3_2_PixMin_added_value_potential_determination.pdf report, automation may not add value

in many event detection applications. Even among those where automation does add value,

setting simple, fixed cutoff values may suffice. We have chosen ADK use-cases with strong

potential automation added value. We encourage you to do likewise as your first, essential

use-case selection step.

30

2) Obtain relevant analysis imagery. As explained in our 3_2_use-

case_evaluation_imagery_desirables.pdf report, use-case datasets should satisfy key

requirements including operational relevance, among others. We have chosen many of our

use-cases to meet those requirements, but we have chosen others that don’t meet all of them

in order to demonstrate how PixMin works. In operational use-cases, we encourage you to

meet all such requirements, just as we have done routinely.

3) Focus analysis on minimizing false alerts subject to precise event detection. We routinely

begin analysis by entering locations in the ..\config\chip_location.csv and then making initial

detection models that will cover all of them. We then refine analysis configurations to

minimize false detections, run quickly, and meet other operational needs. Along the way,

however, we ensure that our refinements will ensure precise target detection. (Our approach

is consistent with, and has been inspired by, established statistical optimization methods.)

4) Make a Level 1 run. Start with template values, template versions, and a pixel alert cutoff

values that will detect all (or nearly all) targets. Choose Level 1 configurations that will run

quickly by keeping the number of Level 1 template values low.

5) Determine satisfactory Level 1 cutoff values. Use analysis statistics to determine an

appropriate pixel alert cutoff value and pixel count cutoff value combination that will either

a) produce satisfactory results using Level 1 triage only or b) produce potentially satisfactory

results using Level 2 triage after Level 1 triage.

6) Configure Level 2 if necessary. If Level 1 triage produces too many false alerts, configure

Level 2 templates, template versions, and cutoff values that will reduce them.

We will now describe specific analysis methods that we have employed for each of our ADK

use-cases. For each case, we will refer to its analysis folder, its analysis*_analysis_notes.pdf

file, its analysis\setup folder, and its analysis\setup\setup_notes.pdf file.

3.2.1. Detecting caribou from aircraft imagery

We begin this section, just as we began Section 3.2, with our caribou detection use-case because

its analysis configuration is the simplest of all. As explained in its *._setup_notes.pdf file, we

selected a sub-image file within a much larger orthomosaic file that contained many caribou as

an input image. We then configured PixMin to simply detect bright patches in the input image.

Nearly all of them appeared within Regions of Interest containing caribou. As explained in the

*.analysis_notes.pdf file for this use-case, we made a few straightforward analysis runs,

following the first five steps in our standard analysis sequence. We concluded that perfect

precision would not be possible for this use-case due to inadequate ground pixel resolution.

Even so, detecting caribou as shown could alert aircraft or drone pilots to the presence, so that

they could reduce camera altitude to take closer looks. with better resolution.

As with other our other use-cases we encourage you to make analysis runs on your own. For

example, you could scan the orthomosaic file in this use-case setup folder for a sub-image with

targets present, then save that sub-image, and then make analysis runs based on it.

31

The picture on the right is a sub-image of within an analysis heat map

that PixMin produced as part of its output_2 folder results for this use-

case. As you can see, PixMin detected the caribou’s bright antler and

tail. As you can also see from the two shadows, the detected caribou

was a female who had a nursing calf under her. The information in this

sub-image typifies the kind of visual information that PixMin heat maps

contain.

3.2.2. Detecting tortoises from trail camera imagery

As explained in the *._setup_notes.pdf file for this use-case, we resized input image file ground

pixel resolution considerably to enable higher speed detection because the original higher

resolution wasn’t necessary to produce perfect results.

Details in the *.analysis_notes.pdf file for this use-case

are noteworthy but self-explanatory.

The picture on left shows analysis heat maps that PixMin

produced as part of its output_2 folder results for this use-

case. These heat maps guided us to a configuration that

highlighted images containing entire desert tortoise bodies

while ignoring images showing only partial bodies and

false alerts. As in the caribou detection use-case, the

information in these heat maps typifies the kind of

analysis guidance that they can provide.

3.2.3.1. Detecting threats from fixed camera imagery: bridge traffic detection

As explained in the *._setup_notes.pdf file and the *.analysis_notes.pdf file for this use-case,

constructing relevant input images from a public website video was not easy. You will come

across many such use-cases where operational imagery has not yet been obtained but a

determination of potential value must be made based on the best dataset available. Details in the

*.analysis_notes.pdf file for this use-case are noteworthy but self-explanatory.

The picture on the right shows analysis heat

maps that PixMin produced as part of its

output_2 folder results for this use-case. The heat

maps show the effect that masking had fur this

use-case. They also show how PixMin detected

the threat when it appeared within its masked

window for two of the four frames. Looking over

heat maps like these considerably speeds up

configuration refinement.

32

3.2.3.2. Detecting threats from fixed camera imagery: river debris detection

As in other use-cases and as explained in the *._setup_notes.pdf file and the

*.analysis_notes.pdf file for this use-case, constructing relevant input images from a public

website video was not easy. Details in the *.analysis_notes.pdf file for this use-case are

noteworthy but self-explanatory. Worthy of special note, once setup was completed configuring

this use-case to produce perfect results took only one hour!

The picture on the left shows one

analysis heat map that PixMin

produced as part of its output_2 folder

results for this use-case. The red marks

over the large object show that PixMin

detected it, but the lack of red marks

over the dark object show that PixMin

did not detect it. Setting cutoff values

in this and other settings depends

strongly on desired target sensitivity.

In this case, we chose cutoffs that

would only detect large objects. In

applications requiring more sensitivity, we would lower cutoff values accordingly. In all such

cases, available analysis heat maps and other tools speeds up analysis considerably.

3.2.4. Detecting obstacles from driverless car imagery

Details in the *._setup_notes.pdf file and the

*.analysis_notes.pdf file and the *.analysis_notes.pdf file

for this use-case are noteworthy, especially two of them.

First, we found that false alerts due to off-the-road ROIs

containing cones and cone-like features were a problem.

This problem could be (and in operational practice has

been) resolved by effectively masking out all pixels that

are not on roadways. For our use-case, we built masks that

were adequate by going through a more tedious masking

setup process, as shown in the figure on the right and

explained in the *._setup_notes.pdf file. This was one of several instances where setting up a

use-case with our available ADK tools was more

tedious and less adequate than configuring an

operational PixMin solution would be.

Second, we were able to show that PixMin can meet

operational requirements shown on the left and

described in 2_4_PixMin_obstacle_detection.pdf

report. Most notably, PixMin can identify obstacles

like construction cones as well as unexpected

33

anomalies within a few milliseconds and upload chips quickly over low bandwidth channels to

meet requirements like those outlined in the report. As with most other ADK use-cases, we set

this one up mainly to demonstrate that its operational concept was feasible.

3.2.5. Detecting oil field changes from aircraft imagery

We organized files for this use-case in folder named 5_asset_management, containing two sub-

folders named gross-oil-pad-change_detection and within_oil-pad_change_detection. You will

find our rationale for organizing the use-case in this way, explained in the ..\ within_oil-

pad_change_detection_notes.pdf file. Other details in the two*.analysis_notes.pdf files and the

two *.analysis_notes.pdf files for this important use-case are noteworthy but self-explanatory.

They are especially noteworthy because many asset management applications that depend

heavily on airborne imagery and satellite imagery could benefit strongly from the kind of triage

that we have demonstrated for this use-case.

We have already seen that change

detection can be not only highly

sensitive to substantive events but

also overly sensitive to confounding

effects, especially pixel

misalignment, color variation, and

uninformative changes outside

regions of interest. We have shown

how PixMin mitigates these three

effects through pixel alignment,

color correction, and masking,

respectively. The heat map on the

right highlights how PixMin can

mitigate shadow differences within

oil pads through masking as well.

As you can see, however, shadow differences can be so substantial that masking them can also

block out large regions that also could contain changes of interest. In such substantial

shadowing cases alternatives, such as flying over regions when shadows are the same or non-

existent or using sensors that produce shadow-free images may be needed.

3.2.6. Detecting warm bodies

This use-case brought in a new analysis element because it required detected chips from thermal

images to trigger output chips from optical (RGB) images. We configured the ADK version of

PixMin with analysis option c specifically to meet this requirement. Deployed versions of

PixMin C may be integrated to suit alternative camera configurations in real-time, along the

same lines of option c but by processing one pair of images at a time instead of processing all

thermal images followed by processing all RGB images. Deployed versions of PixMin may also

benefit from dual cameras that already align paired images spatially as well as temporally. Many

steps that you will see in the *._setup_notes.pdf file and the *.analysis_notes.pdf file for this use-

34

case may not be needed in practice. This was yet another use-case instance where setting up a

use-case with our available ADK tools was more tedious than configuring an operational PixMin

solution would be, but doing so was still essential

to demonstrate use-case feasibility. Other than that

new analysis element, details in the

*.setup_notes.pdf file and the *.analysis_notes.pdf

file for this use-case are noteworthy but self-

explanatory.

The picture on the right shows an image from the

output_6 folder for this use-case. It shows how

PixMin can produce highly precise detection from

thermal imagery coupled with change detection and

pixel alignment.

3.2.7. Detecting underwater objects from drone imagery

Setting up the input datasets for this use-case took substantial time and effort. As fully explained

*._setup_notes.pdf file, we first designed design an operationally relevant drone-based

surveillance flight plan and then generated simulated imagery that the flight plan would produce.

We did so to demonstrate what could be observed for the use-case in keeping with its

2_7_PixMin_underwater_threat_detection.pdf report.

For this use-case:

a) We found that using the correlation criterion produced perfect results.

b) We evaluated runs for many other criteria.

c) We set up input images to reflect what they would look like if a drone were to descend

after making a transact search detection but we did not do any analysis based on them.

We believe that completing runs along the lines of b) and c) would be valuable exercises for you.

Make it so!!

3.2.8. Detecting whales from airborne images

The *._setup_notes.pdf file and the *.analysis_notes.pdf file contents for this use-case are

extensive, but they should be self-explanatory.

3.2.9. Detecting desert tortoises from drone imagery

For this use-case, we made four three sets of runs. The first set of runs, included in the use-case

pixel_alignment folder, showed that pixel alignment with differencing was essential for this

use-case. The second set of runs, included in the post-flight_detection folder, showed that using

pixel alignment to compare paired orthomosaics covering the same ground on two consecutive

35

days, produced good results. The third set of runs, included in the real-time_detection folder,

showed that much higher resolution than we had in available imagery would have been needed to

detect tortoises without differencing. Each of these three sets has its own *._setup_notes.pdf file

and the *.analysis_notes.pdf file. Some of the notes are extensive but they should be self-

explanatory.

3.2.10. Detecting ripples in water

As stated at the beginning of the *._setup_notes.pdf file for this use-case:

“We created the input image for this example to include eight target ripples within a VGA-

sized input image. We created the input image by embedding the eight targets within a

seawater image file. We created the eight targets in keeping with a two (frequencies) by two

(phases) by two (damping factors) design. We created the target sub-images for embedding

and then embedded them into the image carefully, to make the input image realistic.”

The remainder of that file provides corresponding setup details.

As also stated in the *.analysis_notes.pdf file for this use-case:

“We made a variety of runs using different template matching criteria. Among those tried,

the projection criterion performed best in terms of target detection precision and processing

speed.”

The remainder of that file provides corresponding analysis details.

3.2.11. Detecting events from display imagery

The *._setup_notes.pdf file and the *.analysis_notes.pdf file contents for this use-case should be

self-explanatory.

3.2.12. Classifying objects with template matching

Please open your 2_12_PixMin_rocket_classification.pdf report and look at Figure 2. As shown

by the TARGETS images on the left side of the figure, PixMin produced criterion matching

values from each of four input images. For each of these input images, PixMin produced 12

criterion values as shown in the 12 columns of values in the figure. You will find output

criterion values that PixMin produced corresponding to each column in an output_archive folder

for this use-case with the same corresponding name. For example, you will find output criterion

values of 4.7, 3.5, 4.0, and 3.2 in the analysis_statistics_level_1.csv file in the

output_archive\output_1_A_full_left folder.

36

We made 12 PixMin runs to produce each set of outputs in the output_archive folder. We did so

by making a pair of runs for each of the six aptly named *.template_values.csv files in the

..\config folder. For each of those six *.template_values.csv files, we made one run using the

template_versions_level_1.csv file and one run using the template_versions_level_2.csv file.

With the above layout and Figure 2 results in mind, the *._setup_notes.pdf file and the

*.analysis_notes.pdf file contents for this use-case should be self-explanatory.

3.2.13. Correcting images for color variability

We did not create an analysis folder for this use-case because its setup and analysis are evident

from its 2_13_PixMin_image_color_variability_correction.pdf report, the Section 2.13

explanation, and the slide 18 explanation in Section 3.1.

3.2.14. Detecting flaws within rope inpspection images

As introduced in Section 2.14, this use-case stands out among all others because visual

inspection can most readily meet the broadest event detection needs. As you will see in the

..\analysis folder for this use-case, we spent extra time selecting a strong event detection dataset

for this use-case and producing detailed analysis results. Before digging into the ..\analysis

folder contents for this use-case, we recomment that you open the PixMin_video.mp4 in your

0_ADK_videos folder and review its FlawView Detailed Description section.

3.3. Analysis Notes

The notes in this section, which are cited by note number throughout this manual, contain details

that are not covered elsewhere in the Manual.

Note 1: Level 1 alert block size. If the Level 1 alert block size evenly divides the number of

image rows and columns, each Level 1 alert block will be exactly this size. Otherwise, Level 1

alert blocks at image borders may have fewer rows or columns as necessary to result in every

image pixel falling within exactly one alert block.

Note 2: making your own PixMin runs. At any point while reading this Manual, we encourage

you to make your own PixMin runs based on any use-case modifications you wish to make. If

you wish to modify the configuration for any use-case, we recommend that you first copy that

use-case folder to a location in your own workspace, then modify only the copy in your

workspace, and then run PixMin by selecting only the *.pxm.csv file in your copy. That way,

you will retain the all original use-case folders for later comparison and proper referrals from this

Manual. If instead you inadvertently change the configuration within any of the use-case folders

that originally came with this PixC, we have included an ADK_use-case_archive folder that will

enable you to recover each original use-case folder. That archive folder includes a *.zip file

containing the original ADK folders for each use-case.

37

Note 3: color weights determination. PixMin configuration requires specifying three color

weights in ..\config\color_weights.csv files. Color weights determine a weighted sum of RGB

values, computed for each pixel. When PixMin computes a grayscale feature value based on

standard grayscale weight values of (0.2.26,0.7152, 0.0722), the resulting image viewer

rendering appears to be gray instead of colored.

PixMin may also be configured with statistical contrast (see Note 4 below) color weights,

which sum algebraically to zero. When an input pixel’s three RGB values are gray (or nearly

gray), contrast color weighting will make its color feature value zero (or nearly zero), because

all three grayscale input RGB values will be the same (or nearly the same). When the highest

input pixel RGB value corresponds to the most positive contrast color weight value and its

lowest input pixel value corresponds to its most negative contrast color value, its color feature

value will be positive. In the opposite case, its color feature value will be most negative. That

way, contrast color weights will produce the most positive color feature values when for pixels

that have the same profile, while grayscale (or grayscale-like) values will be zero (or nearly

zero), and their values will be either less positive or negative. For example, contrast color

weights if (05. -0.25, -.25) will produce high color feature values when input RGB values are

pure red.

Note 4: statistical contrast templates. When PixMin configures template contrasts for

templates along with projection matching criteria, ROIs that have uniform clutter will be

unlikely to produce alerts because high and low pixel values within ROIs will cancel each other

out. When configuring PixMin contrasts, we sometimes configure template values of zero

outside target-shaped template values and then place other template values that will make all

values sum to zero further outside the zero values. We do that to create buffer zones around

target-shaped template zones that will enable regions around targets, which can be highly

variable and reduce detection precision, to be ignored.

Note 5: chip locations files. These files of the form chip_locations.csv (see Section 3.1

explanation of slide 22; Appendix B) may be either produced as part of normal output or

received as analysis input. When produced as part of normal output, the file identifies image

alerted block output chips. When placed in the ..\config folder with analysis options selected,

the file identifies alert block output chips for which analysis statistics file output will be

produced. In either case, chip locations files identify chip locations within input images.

Note 6: template size versus consecutive image processing speed.

During Level 1 processing, PixMin triages Level 1 alert blocks that satisfy Level 1 pixel alert

cutoff value and Level 1 template matching criteria. PixMin classifies alert blocks that meet

those criteria as Level 1 alerted blocks. If Level 2 triage has not been specified in the *.pxm.csv

file, PixMin produces normal output based on those Level 1 alerted blocks. If Level 2 triage

has been specified in the *.pxm.csv file, PixMin looks further within Level 1 alerted blocks for

Level 2 alert blocks that satisfy Level 2 template matching criteria. PixMin classifies alert

blocks that meet those criteria as Level 2 alerted blocks. If Level 2 triage has been specified,

PixMin produces normal output based on those Level 2 alerted blocks.

https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Image_viewer

38

PixMin processing speed depends directly on the total number of configured level 1 template

values. For example, when only one template version has been configured, PixMin processing

speed will be 10 times slower if a template_values_level_1.csv file has 20 rows and 10 columns

that if the file has 5 rows and 4 columns. Likewise, PixMin processing will be four times slower

if four level 1 template versions have been configured than if only one template version has been

configured. PixMin processing speed depends on the number of level 1 template values in this

way whether or not Level 2 triage has been configured.

We have designed PixMin two have two configurable triage levels to allow substantial

processing time reduction while maintaining high detection precision. In our whale detection

use-case, for example, we configured the total number of level 1 template values to be small,

enabling fast level 1 triage that produced only a small number of level 1 alerted blocks. We

configured the total number of level 2 template values to be much larger to enable higher

detection precision. Configuring more level 2 template values took much less time than if we

had configured more level 1 template values because level 2 triage took place only within level 1

alerted blocks, which was much smaller that the total number of level 1 alert blocks.

Note 7: HDFView numerical value clamping requirement. When HDFView converts an input

*.jpg file to a *.h5 file, it automatically rescales (and distorts) input image values based on its

maximum and minimum as described in the link below. If the maximum value is 255 and the

minimum value is 0 no rescaling will occur (see

https://support.hdfgroup.org/products/java/hdfview/UsersGuide/ug06imageview.html and scroll

down to “Converting non-byte data to byte data”). Rescaling distortion can be precluded by

making a “clamped” copy of an input image file using IrfanView. The clamped file can be made

by converting a few pixel values to 0 at one corner of the image file and other pixel values to 255

at another corner of the image file. When the clamped image file is read into HDFView, all

HDFView pixels will have the same values as their corresponding clamped image pixels.

Clamping does not work when HDFView converts a grayscale image. (We found nothing

explaining the problem on the web.) For that reason, we only used HDFView to convert

clamped RGB *.jpg files.

Note 8: analysis options. Produces analysis output as specified by *pxm.csv file line 22 (see

Appendix C), as follows.

• If left blank, no analysis will take place, enabling PixMin to run much faster than when

other analysis options are selected.

• if set to a, PixMin will produce Level 1 heat maps and analysis statistics files as well as

their counterparts if Level 2 has been selected.

• if set to b, PixMin will produce the same output and analysis statistics files as when set

to a, except instead of producing heat maps, PixMin will write Level 1 feature values to

*.h5 files (see Appendix B).

• if set to c, PixMin will receive chip location values from the chip_locations.csv file and

produce normal output as if PixMin had produced alerts at the same chip locations.

https://support.hdfgroup.org/products/java/hdfview/UsersGuide/ug06imageview.html

39

• if set to d, PixMin will produce the same output and analysis statistics files as when set

to a, except PixMin will color output image file pixels and output heat map pixels red at

all locations where PixMin produced alerts based on them.

Resulting analysis statistics files files of the form analysis_statistics_level_1.csv and

analysis_statistics_level_2.csv and their *.xlsx counterparts (see Section 3.1 explanations of

slides 21-30), contain alert counts, broken down by input image file, chip locations file

chip, and template combination, along with other ADK output statistics. Analysis statistics

files, along with analysis heat maps, enable analysts to determine performance of each

template file for each chip specified in a chip locations file.

Note 9: standardizing effects. PixMin routinely standardizes criterion values so that their

cutoff values will be normalized to the same distribution scale. PixMin optionally standardizes

input color feature values (see Appendix C, line 6 entry) so that PixMin detection results will

not vary over images due to differences in image mean (cf. brightness) and variance (cf.

contrast) values.

Note 10: change detection. PixMin performs change detection (cf. differencing) as follows.

• PixMin finds a ..\config\diff folder. The diff folder may contain either one file for each

..\input_image folder or a single file named ..\default_diff.png. Each file in the diff folder

must be in acceptable input file format.

• PixMin matches a file in the diff folder with a file in the ..\input_image folder. If PixMin

finds a single ..\default_diff.* file in the folder, then it matches every file in the

..\input_image file with that single file. Otherwise, PixMin matches the first pair of files

in each folder with each other, the second pair with each other, and so on.

• PixMin then performs differencing without pixel alignment, during which each image

color feature value in a diff folder file is subtracted from its homologous color feature

value in its corresponding input_image folder file.

• If set to a value greater than one, PixMin performs differencing with pixel alignment.

Note 11: correlation matching. Correlation criterion matching values do not depend on

template means, template standard deviation , or their corresponding feature means and standard

deviations. As a result, correlation matching automatically adjusts regions within image files for

differences in brightness and contrast, much like SAD matching with centering.

Note 12: PixMin criterion setting alternatives. PixMin can match templates to ROIs, according

to one of ten methods: masked or unmasked versions of sums of absolute difference (SAD)

values, projections, correlations, “centered” SAD values, or standard deviations, and

correlations; PixMin must be configured to process one criterion at Level 1, whether or not

Level 2 processing has been configured. PixMin must also be configured to process one criterion

during each run when Level 2 processing is configured.

Note 13: grayscale weighting. When PixMin computes color feature values based on standard

grayscale weight values of (0.2.26,0.7152, 0.0722) specified in the color_weights.csv file, the

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Grayscale

40

resulting image viewer rendering appears to be gray instead of colored. Also, when producing

analysis output, PixMin marks criterion values that don’t exceed pixel cutoff values values with

grayscale values.

Note 14: heat map values. A heat map output PNG file shows image criterion pixel values

ranging from the lowest (black) values that would be least likely to produce a pixel alert to the

highest (white or red) values that would be most likely to produce a pixel alert. Heat map values

exceeding pixel alert cutoff values are shown as red. Other criterion pixel values are shown on a

grayscale.

Note 15: feature . PixMin performs masking as follows.

• PixMin finds a ..\config\mask folder. The mask folder may contain either one *.csv file

for each ..\input_image folder or a single file named ..\default_mask.png.

• PixMin matches a file in the mask folder with a file in the ..\input_image folder. If

PixMin finds a single ..\default_mask.csv file in the folder, then it matches every file in

the ..\input_image file with that single file. Otherwise, PixMin matches the first pair of

files in each folder with each other, the second pair with each other, and so on.

• PixMin evaluates selected pixels within each input image, as specified by input masking

values that PixMin reads from the ..\mask folder.

• If a masking value is zero at a corresponding pixel location, PixMin does not perform

automatic detection at that pixel location or at any pixel location in the region of interest

(ROI) that covers that pixel location. As a result, PixMin will only perform automatic

detection at those pixel locations with corresponding mask values of 1, and only if all

ROI pixels surrounding those pixel locations have corresponding mask values of 1.

• Masking values may be either input as files in the mask folder (see Appendix B) or

determined during pixel alignment, or both (see Section 3.1, explanations of slides 13-

14).

Note 15: projection meaning. We call sums of products between values between templates and

homologous feature values projections because projection values are highest when template

shapes match their shapes match homologous feature shapes. Projection based template

matching can be especially effective when used with statistical contrast templates. Projection-

based template matching can be especially effective when used with statistical contrast

templates. Correlation matching may produce more precise detections than projection

matching, but projection matching takes much less processing time.

Note 16: template types, template versions, and template combinations. For any PixMin

configuration at Level 1 and optionally at Level 2, you may configure any number of template

types in template_values_level_*.csv files (Appendix B) as well as any number of template

versions in your template_versions_level_*.csv files. For each type that you specify in a

template_values_level_*.csv file, you must include a set of corresponding template values in

that file. For each version that you specify in a template_versions_level_*.csv file, you must

specify a pair of scale and rotation values in that file. Based on those specifications, PixMin

produces a criterion value at each input image pixel location for each corresponding pixel type

by pixel version combination.

https://en.wikipedia.org/wiki/Image_viewer

41

4. PixMin Evolution

The PixMin concept took shape when our founder proposed that machine learning and detection

should take place all at once, unlike separate training and detection required by conventional

machine learning. With venture funding, his teams developed related products for real-time,

automatic event forecasting. With Government R&D funding, his teams refined related solutions

to detect threats from a broad variety of sensors. These four key developments have evolved

PixMin into a powerful product for triaging massive streams of remote sensor imagery into

nuggets of valuable information—automatically, at the sensory edge, and in real time.

Most recently, we have focused on making PixMin analysis more powerful, general,

interpretable, and visually interpretable. Our extensive and understandable ADK use-case

library, configuration, and analysis options have resulted, enabling analysts without deep

learning or statistical analysis backgrounds to configure, run, analyze PixMin’s edge machine

learning results, independently and effectively with their own datasets and without any outside

help.

42

5. Future Directions

With your help, we intend to greatly expand out collection of ADK use-cases and our library of

use-cases. As integrated PixMin solutions and ADK use-cases increase, we anticipate other

developments, including the following:

➢ Increasing triage to include more than two levels.

➢ Including provision for automatic optimization based on finding templates, cutoff values,

and other configuration options that will produce the most precise detections possible,

subject to specified SWaP constraints.

➢ Added tools to streamline PixMin use-case setup and analysis.

➢ Database management tools that will enable quick access to configuration, template

library, tools, and use-case metadata. Efficient database organization will be essential for

streamlining configuration and analysis as well as for enabling automatic optimization.

6. Conclusion

In this Manual we have introduced the PixMin Analyst Development Kit and we have showed

you how to run datasets that are included in the ADK. Now that you have read the Manual and

run some examples, you should understand why PixMin automatic triage is valuable and

straightforward. You should also be able to begin analyzing your own datasets and configure

PixMin, on your own and in your own way. We are here to help along the way. Feel free to

contact us at any point. More than anything, we want PixMin to help you save time and money

by detecting nuggets of useful information within massive streams of imagery⎯with your own

data, deftly and on your own!

43

Appendix A. Terms glossary

This Glossary describes key terms, which you find set in bold font below and throughout this

Manual. Each term entry that is not self-explanatory points you to sections in the Manual where

it is introduced and explained.

• analysis option) a: a config file option that produces output analysis chip level and image

level heat map PNG files showing criterion values, along with analysis alert counts files

(see Section 3.3, Note 8).

• (PixMin) ADK: Analyst Development Kit.

• AI: artificial intelligence.

• alert block: an image file sub-image within which PixMin identifies and counts alerts (see

Section 3.3, Note 1).

• alert block layout tools: see Appendix B.

• alert maps: PixMin output images highlighting alerted blocks with black boundaries.

• alerted block: an alert block with its number of pixel level alerts exceeding the alert block

cutoff value.

• alerts: output events within image files that have been detected, based on config folder

metrics that analysts have determined using the Analysis Development Kit. PixMin

produces each alert as an alerted chip, an alert map, and a chip_locations_.csv file entry.

• (PixMin) analysis: determining precise PixMin configurations subject to SWaP constraints,

by examining analysis option output.

• analysis alert counts files: analysis output files of the form analysis_counts_level_1.csv

and analysis_counts_level_2.csv, containing pixel alert counts, broken down by input

image file, chip locations file chip, and template combination. These counts, along with

analysis heat maps, enable analysts to determine template performance for each image file

within the chip locations file.

• analysis option: a configuration input metric that can specify one of four analysis options:

blank (producing no analysis output), a, b, c, or d (see Section 3.3, Note 8).

• analysis output: a collection of image files or h5 files including heat map files and analysis

output chip files under either analysis option a, b, or d, along with analysis alert count

files.

• analysis statistics files: analysis output files of the form analysis_statistics_level_1.csv (see

Section 3.3, Note 8), containing alert counts, broken down by input image file, chip

locations file chip,.

• Analyst Development Kit (ADK): A collection of use-case folders, tools, and

documentation, along with a PixMin executable file. The ADK enables you to run each use-

case in the collection using PixMin. The ADK also provides you with sufficient tools and

understanding to prepare and run your own use-case files, independently and on your own.

• ANNs: artificial neural networks.

• artificial intelligence (AI): see Wikipedia artificial intelligence.

• artificial neural networks: see Wikipedia artificial neural networks.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_neural_network

44

• (analysis option) b: a config file option that produces output analysis chip level and image

level HDFView files containing criterion values, along with analysis alert counts files (see

Section 3.3, Note 8).

• auto-adaptive processing: using lagged image differencing, contrast templates, image

standardizing, and other methods to identify events of interest, while controlling for changes

in background brightness and contrast over time, background changes within images over

time, and background differences within images. Auto-adaptive processing increases PixMin

detection precision, makes PixMin detection robust, and eliminates or reduces needs to

recalibrate PixMin configurations periodically.

• Bayer filter mosaic: see Wikipedia bayer filter mosaic.

• binary (metric): see Wikipedia binary data.

• block alert count: the number of pixel locations within an alert block having criterion

values that exceed a configured pixel alert cutoff value.

• alert block cutoff: if a block alert count exceeds this value, which is specified in the

*pxm.csv file, PixMin classifies the alert block as an alerted block.

• (chip) borders: black boundaries that PixMin places at the edge of alerted chips within alert

maps.

• brightness: (see Section 3.3, Note 9; Wikipedia brightness).

• (analysis option) c: a config file option that produces normal output based on input chip

locations file entries (see Section 3.3, Note 8).

• C++ (programming language): see Wikipedia C++ programming language.

• change detection: highlighting pixels that have changed between images shot at different

time points by subtracting pixel values in a diff folder from homologous pixel values in a

corresponding input image file (see Section 3.1 explanations of slides 14-16; Section 3.3,

Note 10; Wikipedia statistical change detection). We use the term interchangeably with

differencing.,

• chip: A chip may be a subset of an input image corresponding to an alerted block that

PixMin has identified and produced as a part of normal output. Alternatively, a chip may

be represented by its location with an input chip locations file. In either case, a chip must be

the same size as the “Level 1 alert block and output chip size” specified in the config file.

• (analysis or output) chip locations files: files of the form chip_locations.csv that may be

either produced as part of normal output or received as analysis input (see Section 3.3, Note

5).

• coding conventions: see Wikipedia coding conventions.

• color alignment: a PixMin process that converts each input image to a counterpart that has

the same histogram as a Basis.jpg file in the config folder. Color alignment corrects images

for color variability that could otherwise produce variation that would inhibit automatic event

detection (see Section 2.13).

• color feature (values): single feature PixMin values that PixMin computes at each input

image pixel location as a function of its three RGB values .

• color weights: three numerical input color_weights.csv file (Appendix B).values that PixMin

uses at each input image pixel location to compute its color feature value as a weighted

sum of its three RGB values (see Section 3.3, Note 3).

https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Binary_data
https://en.wikipedia.org/wiki/Brightness
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Change_detection
https://en.wikipedia.org/wiki/Coding_conventions

45

• config file: a file of the form *.pxm.csv, containing configuration input metrics.

• config metrics: numerical-valued or text-valued input entities with labels that analysts set in

config files (Appendix B-C).

• config folder: a collection of sub-folders and files, most notably a config file, containing

configuration input metrics (Appendix B).

• consecutive image processing: the phase where PixMin identifies events one image at time

after the preliminary configuration phase.

• contrast: a measure of image sharpness. (see Section 3.3, Note 9; Wikipedia Contrast

(vision).

• correlation match: a matching value, computed as the correlation coefficient between the

values for any given template and homologous image feature values (see Section 3.3, Note

11).

• criterion: a basis for matching templates to ROIs, according to one of ten methods (see

Section 3.3, note 12).

• (template) criterion values: feature values, computed at each pixel location, as a function of

template values centered at each pixel location and their corresponding ROI values at that

location..

• (pixel alignment) crosshairs: cross-shaped arrangements (when represented in two

dimensions) of input image feature values and corresponding diff folder images used for

pixel alignment.

• crosshair match: SAD value between two pairs of crosshairs.

• cumulative distribution function (CDF): see Wikipedia cumulative distribution.

• cutoff (values): numerical valued configuration input metrics that PixMin uses to

determine if alerts have occurred. For each triage level, cutoff values come in pairs made up

of a pixel alert cutoff value and a block alert cutoff count.

• (analysis option) d: a config file option that produces output analysis chip level and image

level discovery map PNG files showing criterion values, along with analysis alert counts

files (see Section 3.3, Note 8).

• diff folder: a config subfolder containing one or more image files that will be used during

change detection (Section 3.1).

• differencing: we use this term interchangeably with change detection (others may give the

terms distinct meanings -- see Wikipedia image subtraction).

• differencing file: a *.PNG file within a diff folder that PixMin uses for differencing (see

Appendix B).

• discovery (maps): event detection representations produced by PixMin when analysis type =

d, so named because they enable analysts to “discover” event pixels embedded within input

image files.

• display contrast: see Wikipedia display contrast.

• dynamic: see Wikipedia dynamic memory allocation.

• empty (criterion value): a criterion value that cannot be computed during consecutive image

processing because either a) one or more ROI values that go into computing it is masked, b)

its standard deviation match value is zero, or c) its correlation match value has a zero

https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Contrast_(vision)
https://en.wikipedia.org/wiki/Correlation_coefficient
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Image_subtraction
https://en.wikipedia.org/wiki/Display_contrast
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation

46

denominator. Once a criterion value has been identified as empty, PixMin marks it as such

and acts accordingly.

• (PixMin) event detection: identifying alerted blocks within input image files and

producing corresponding normal output files or analysis output files.

• feature: a functional combination of pixel values, for example color feature values and

template criterion values .

• feature array: a two-dimensional feature representation.

• feature array reorienting tools: see Appendix B.

• fps: image capture rate in frames per second.

• frame: a border of pixels surrounding a feature array.

• framed image: a two-dimensional array containing pixel values within a frame.

• GIF (format): see Wikipedia GIF.

• GPU: see Wikipedia GPUs.

• grazing angle: see Wikipedia Angle of incidence.

• grayscale: A weighted sum of the RGB values, computed for each pixel, that makes all

pixels look varying shades of gray (see Section 3.3, Note 13; Wikipedia grayscale).

• ground pixel resolution: pixel width on the Earth's surface (see Wikipedia Ground sample

distance).

• (image or chip) heat map: an analysis output PNG file showing alerted pixel values if

varying levels of red and unalerted values in varying shades of gray)see Section 3.3, Note

14).

• *.h5: an output file format produced by analysis option b, producing PixMin feature values

that can be opened in spreadsheet form using HDFView (see Wikipedia Hierarchical Data

Format; Appendix B).

• HDFView: a viewer that can open *.h5 files in spreadsheet form (Wikipedia Hierarchical

Data Format; Appendix B).

• heat map: an analysis output image file containing transformed image criterion values with

alerted chips in a form that highlights the criterion’s alert generation capability.

• histogram: see Wikipedia histogram).

• (Digital) image: a two-dimensional array of pixels that can readily be printed or shown by an

image viewer.

• hit ratio: an analysis metric computed for each chip_locations.csv file entry and computed

as the ratio of the chip’s alert counts within a combination to the alert counts for the entire

combination.

• image file (format): a file that is suitable for PixMin input by being in JPEG, PNG, or JIF

format and having 24-bit color depth (see Wikipedia color depth).

• integer (metric): see Wikipedia Wikipedia Integer .

• internal border removal: When alerted chips overlap, chip borders inside the overlapping

regions can obscure their content. As a workaround the PixMin ADK offers an internal

border removal option. When that option is selected, PixMin removes internal chip borders

while producing output alert maps.

https://en.wikipedia.org/wiki/GIF
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Angle_of_incidence_(optics)
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Ground_sample_distance
https://en.wikipedia.org/wiki/Ground_sample_distance
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/Integer_(computer_science)

47

• IrfanView: an image viewer, editor, organizer, and converter program (see Wikipedia

IrfanView; Appendix B).

• JPEG (format): see Wikipedia JPEG.

• (triage) level: PixMin triages pixels during either Level 1 processing only or Level 1

processing followed by Level 2 processing (see Section 3.3, Note 6).

• lagged image differencing: subtracting pixel values from each image that was shot a fixed

number of time points ago from values in each current image.

• machine learning (ML): see Wikipedia machine learning.

• mask file: a *.csv file, inside a mask folder, containing binary masking values homologous

to input image pixel values (see 7) in Appendix B).

• mask file building tool: an Excel spreadsheet that enables analysts to quickly build mask

files (Appendix B).

• mask folder: a config subfolder containing mask files (see Appendix B)

• mask region building tool: see Appendix B.

• mask region insertion tool: see Appendix B.

• masking: a PixMin config option that forces PixMin to detect events only within allowable

pixels, as specified by a mask file.

• (criterion) matching value: a value, computed at each pixel location, which reflects how

closely a set of values for a template combination resembles its corresponding ROI values,

relative to the location. PixMin computes matching values based on one among several

configurable matching criteria.

• ML: machine learning.

• (frame) mirroring: flipping feature values at image borders into outlying frame values.

• multi-core processor: see Wikipedia, multi-core processing. PixMin can run on multi-core

processers quickly, by running separate instances of PixMin on different processors at the

same time.

• normal output: a collection of image files including alert maps and chips, along with chip

location files and other text files that PixMin routinely provides.

• normalization: adjusting values measured on different scales to a notionally common scale -

-see Wikipedia, normalization (statistics).

• optimizing (tools): a variety of computing methods that may be use to maximize

performance (e.g., PixMin precision), subject to operational constraints (e.g., low SWaP)

see Wikipedia numerical optimization

• orthomosaic (ORTHO) (file): made by merging component image files Wikipedia

orthophoto.

• output alert centering: centering output chips as well as their locations within alert maps

around the point where the most pixel alerts occurred.

• passthrough: Using criterion values that were computed during consecutive image

processing for Level 1 as a basis for Level 2 consecutive image processing.

• pixel: A point within an image represented by one or more RGB values. The PixMin

Manual [1] also uses the term to describe feature values, standardized values, masking

values, and region of interest locations at each point.

https://en.wikipedia.org/wiki/IrfanView
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Orthophoto

48

• pixel alert: a determination made by PixMin at each pixel location that its matching value

has exceeded the pixel alert cutoff value.

• pixel alignment: A PixMin option that enables input image pixels to be aligned with

corresponding diff image pixels. Change detection with pixel alignment can neutralize

unchanged pixels more effectively than change detection without it.

• pixel match cutoff (value): a real-valued metric, set in the config file, that PixMin uses to

identify pixel level alerts. For each template combination and at every pixel location, if a

template matching criterion value exceeds its pixel match cutoff value, then PixMin marks

the pixel at that location as a pixel level alert.

• PixC: a personal computer that contains the PixMin ADK along with a variety of data

analysis and image processing computer applications that the ADK cites..

• PixMin code: Low level C code designed for fast operation in Windows and other

computing environments on conventional as well as special purpose processors.

• PixMin processor: a software application that processes images one at a time to detect,

highlight, and display alerts.

• PNG (format): see Wikipedia PNG.

• precise (event detection): classifying regions of interest that contain targets as alerts with

high likelihood where they exist but classifying ROIs that do not contain targets with low

likelihood. In statistical terms, precise detection must have high sensitivity and specificity,

which can best be achieved when criterion values have low variability in pixel regions where

targets are absent.

• preliminary configuration: the phase where PixMin checks for input image or config file

errors and configures PixMin based on config file metrics, in preparation for consecutive

image processing.

• (template version) rotation degrees: A value, specified for each template type, that PixMin

uses to transform its corresponding ROI values, specified in the template versions file (see

the Section 3.1 explanation of slide 11).

• projection (match): a matching value, computed as the sum of cross-products between

values for a given template and homologous feature values within its corresponding ROI

(see Section 3.3, Note 15).

• *.pxm.csv: the basic PixMin config file extension Appendix C).

• raw (image format): see Wikipedia raw image format. PixMin special-purpose use of raw

image format can speed processing by up substantially because the format represents each

quartet of Bayer pixels as only one grayscale number instead of 12 RGB numbers.

• region of interest (ROI): a group of color feature values, centered at a pixel location that

envelops all color feature values around the location that will be combined with template

combination values to compute criterion values for the template combination at that

location.

• (image) resolution: an image file pixel count, which governs PixMin run time as well as

potential PixMin precision (see Wikipedia image resolution).

• RGB: a triplet of red, green, and blue color integer values, with each value ranging from 0

through 255. RGB values for each pixel may be found in any three-color image file.

https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Raw_image_format
https://en.wikipedia.org/wiki/Image_resolution

49

• Robust detection: event detection that remains precise over changing brightness, contrast,

or background conditions, between images as well as over different regions within images

(see Wikipedia, Robust Statistics). PixMin incorporates auto-adaptive processing,

contrasts, differencing, and standardizing to ensure robust detection.

• ROI: region of interest.

• (template version) rotation degrees: An integer valued configuration metric for each

template combination, specified in template_versions_level_1.csv and

template_versions_level_2.csv files, that PixMin uses to rotate each of its Region of Interest

pixel locations around its center pixel location (see the Section 3.1 explanations of slides 11-

12).

• (template version) scale: A positive valued configuration metric each template

combination, specified in template_versions_level_1.csv and template_versions_level_2.csv

files, that PixMin uses to expand the two-dimensional distance from each ROI pixel to its

center pixel location (see the Section 3.1 explanations of slides 11-12).

• sensitivity: see Wikipedia sensitivity and specificity.

• simple pixel feature values: each such value as a weighted sum of its three RGB values,

with weights specified by the color_weights.csv configuration file.

• specificity: see Wikipedia sensitivity and specificity.

• standard correlation formula: see Wikipedia correlation.

• standard covariance formula: see Wikipedia covariance.

• standard deviation: see Wikipedia standard deviation.

• standard deviation match: a matching value, computed as the standard deviation among

feature values that are homologous to corresponding ROI.

• standardizing: transforming pixel values to their standard scores subtracting their mean

from each of them and then dividing by their standard deviation (see Section 3.3, Note 9;

Wikipedia standard score).

• statistical contrast templates: templates having values that sum algebraically to zero (see

Section 3.3, Note 4; Wikipedia statistical contrasts).

• statistical optimization: configuring an event detection process so that it will produce

acceptably high specificity, subject to meeting acceptable sensitivity requirements (see

Wikipedia, Receiver Operating Characteristic).

• sum of absolute differences (SAD) match: a matching value, computed as the sum of

absolute differences between the values for a given template and homologous feature values

within its ROI.

• sum of absolute differences (SAD): see Wikipedia sum of absolute differences.

• SWaP: computing solution size, weight, and power: see Wikipedia power-to-weight ratio.

• target (events): One or more regions of interest within input image files that PixMin

templates have been made to highlight.

• template: a rectangular array of pixel values that has been configured to match

corresponding pixel values within a region of interest.

• template building tool: see Appendix B.

https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_score
https://en.wikipedia.org/wiki/Contrast_(statistics)#:~:text=In%20statistics%2C%20particularly%20in%20analysis,allowing%20comparison%20of%20different%20treatments.
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Sum_of_absolute_differences
https://en.wikipedia.org/wiki/Power-to-weight_ratio

50

• template centering: subtracting mean values from template values and subtracting mean

values from feature ROI values during “centered” sum of absolute differences (SAD)

matching. As a result, centered SAD matching along automatically adjusts regions within

image files for differences in brightness.

• template combination: a specific template type as specified in a

template_values_level_1.csv file or its template_values_level_2.csv file, along with one of its

specific template versions as specified in its corresponding template_versions_level_1.csv or

template_values_level_2.csv file (see Section 3.3, Note 16).

• template criterion value: a feature value, computed at each pixel location as a criterion-

based function of values for a template combination and ROI color feature values centered

at that location.

• template types: A positive integer at the beginning of template values file (see Appendix

B), specifying number of templates to be specified later in the file (see Section 3.3, Note 16;

Appendix B).

• template values file: A file of the form *.template_values.csv and located in the config

folder. This file contains the number of template types, the rows and columns for each

type, and values for each type (see Section 3.3, Note 16; Appendix B).

• template versions file: A template arrangement for any given type, specified by its rotation

degree value and its scale value within a *.template_versions.csv file. For each template

type, this file contains the number of paired rotation degrees and scale values along with

those values (see Section 3.3, Note 16; Appendix B).

• triage: Reduction of pixels within image files to pixels within alerted blocks during Level 1

or Level 2 processing at that location.

• (template) types: The number of distinct Level 1 or Level 2 templates.

• (ADK) use-case: One of thirteen sensor processing applications, contained in your ADK.

Each use-case includes its own aptly named ADK folder along with sections in this Manual

that describe it.

• (template) types: The number of distinct Level 1 or Level 2 templates.

• variance: see Wikipedia variance.

• vector: a one-dimensional array.

• VGA (image file): an image file that has 480 rows and 640 columns in keeping with its

corresponding computer display standard (see Wikipedia Video Graphics Display).

• video to JPG converter: an application that extracts a configurable number of JPG files

from video files (see Appendix B).

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Video_Graphics_Array

51

Appendix B. ADK / PixC Components

B.1. ADK / PixC folder structure

The above figure shows your ADK folder structure, which should be mostly familiar to you,

since you have been navigating through it while reading the Manual up to this point. The

arrows point to sub-folders, stemming first from the

parent folder on the left. You will find that folder,

named PixMin_ADK_2024, with the Documents

folder on your PixC computer. That folder includes

the four ADK folders, along with a shortcut the the

PixMin_2024 executable file. Each use-case_files

folder has the same sub-folder structure shown on

the lower left.

The Figure on the right shows config folder contents

for our river detection use-case. Among those, the

diff folder, the mask folder, and the chip_locations

file are optional. All others are required. You will

find details on their contents explained for our river

threat uses-case descriptions (see Sections 2.2 and

3.2), among others. You will find

input_metrics.pxm.csv file details in Appendix C as

well as throughout Sections 2 and 3.2.

B2. Contents within the configuration files folder.

52

You will find the following files in your configuration_files folder. Since we have introduced

them all previously, their contents should be self-explanatory with the exception of the

2_input_metrics.pxm.csv file. You will find details on the contents of that file in Appendix C.

• 1_color_weights_[GRAYSCALE].csv

• 2_input_metrics_[TEMPLATE]. pxm.csv file.

• 3a_template_values_[SIMPLE_PROJECTION_LIGHT]_level_[#].csv

• 3b_template_values_[SIMPLE_PROJECTION_DARK]_level_[#].csv

• 4_template_versions_[SIMPLE]_level_ [#].csv

• 5_chip_locations_[TEMPLATE].csv

The folder also include an examples sub-folder containing copies of configuration files copied

from selected use-case config folders.

B3. Analysis Tools folder contents.

You will find the following files in your analysis_tool_files folder. Since we have introduced

them all previously, their contents should be self-explanatory.

• 1a_analysis_statistics_level_1_example.xlsx

• 1b_analysis_statistics_level_2_example..xlsx

• 2a_feature_array_reorienting_tool_257x257

• 2b_feature_array_reorienting_tool_513x513.xlsx

• 3a_mask_region_building_tool.xlsx

• 3b_mask_region_insertion_tool.xlsx

• 4_template_building_tool_example.xlsx

• 5_drone_flight_plan_coverage_calculator.xlsx

• 5a_alert_block_layout_4K_240_block_size.docx

• 5b_alert_block_layout_4K_432_block_size.docx

• 5c_alert_block_layout_4K_540_block_size.docx

• 5d_alert_block_layout_metrics_4K.xlsx

You will also find the following applications downloaded on your PixC computer.

• https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm

• https://www.videolan.org/vlc/

• https://www.irfanview.com/64bit.htm

• https://portal.hdfgroup.org/display/support/HDFView+3.1.3?

We use the https://clideo.com/merge-video converter to create *.mp4 files. The converter

includes many useful options, most notably a wide range of output video file frame rates. We

also use https://clideo.com/merge-mp4 and https://clideo.com/crop-video .

https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
https://www.videolan.org/vlc/
https://www.irfanview.com/64bit.htm
https://portal.hdfgroup.org/display/support/HDFView+3.1.3
https://clideo.com/merge-video
https://clideo.com/merge-mp4
https://clideo.com/crop-video

53

To make a side-by-side video, first click https://clideo.com/resources/how-to-make-side-by-side-

video -- First open the link on the left, then open a new instance of the browser and then use it t

open https://clideo.com/video-editor . Then upload the files to be shown side by side,, then click

the + button for each clip on the left. Doing will get both frames into the main window. Then

resize / move around as desired.

https://clideo.com/resources/how-to-make-side-by-side-video
https://clideo.com/resources/how-to-make-side-by-side-video
https://clideo.com/video-editor

54

Appendix C. Configuration metrics glossary

As you have seen throughout this Manual, we have explained and introduced key configuration

metrics located in a variety of ADK *.pxm.csv files. We have included details on each metrics

below for quick reference. We have numbered the items according to their required *.pxm.csv

file lines (see Appendix B, 2_input_metrics_[TEMPLATE].pxm.csv file description). Along with

each line’s standard description that you will find in all *.pxm.csv, we have added operational

details below that will help you determine each line’s metric value. You will find metric fields

inside < > delimiters, which show where the metrics belong. The delimiters should not be

included when you set their corresponding *.pxm.csv file values.

1) input image folder < {input_metric_path}\..\input_images >. This path points to a folder

containing PixMin input image files.

2) input pixel rows < positive integer >. This positive integer should be the same as the

"Height" value, found by right-clicking the image file icon and then selecting Properties-

Advanced.

3) input pixel columns < positive integer >. This positive integer should be the same as the

"Width" value, found by right-clicking the image file icon and then selecting Properties-

Advanced.

4) configuration metrics folder < {input_metric_path} >. This path points to a folder containing

configuration files along with this *.pxm.csv file.

5) color alignment < 0 or 1 >. If set to one, PixMin performs image color alignment. If set to

zero, PixMin does not.

6) feature standardizing option < 0 or 1 >. If set to one, PixMin standardizes feature values. If

set to zero, PixMin does not (see Section 3.3, Note 9).

7) feature masking option < 0 or 1 >. If set to zero, PixMin does not perform masking. If set to

one, PixMin performs masking(see Section 3.3, Note 15).

8) feature diff option < non-negative integer >. If set to to zero, PixMin does not perform

differencing. If set to one, PixMin performs differencing.

9) Level 1 alert block and output chip size < positive integer >. This is the number of pixel

rows and columns in each Level 1 alert block and output chip (see Section 3.3, Note 1).

10) Level 1 template matching basis < 0, 1, 2, 3, or 4 >. Each pixel's Level 1 match value

measures how close its surrounding values match its template according to its basis, which

will be a SAD basis if set to zero, a projection basis if set to one, a correlation basis if set to

two, a SAD with "centering" basis if set to three, and a standard deviation basis if set to

four.

11) Level 1 pixel match cutoff value < numerical value >. PixMin produces Level 1 pixel alerts

when pixel's standardized criterion values exceed this cutoff value (see Section 3.3, Note

9). PixMin always standardizes criterion values within each template combination so that

they will not be affected by combination criterion value mean or standard deviation

differences. That way, criterion values for each combination will be on the same scale and a

single cutoff criterion value will impact alerting each combination in the same way.

12) Level 1 alert block cutoff value < positive integer >. Each Level 1 alert block's pixel level

alert count determines its alert status. PixMin produces a Level 1 block alert if the block's

pixel level alert count equals or exceeds this value.

55

13) Level 1 maximum alerts < positive integer >. This is the maximum number of Level 1 alerts

per image that PixMin will produce. If the number of Level 1 alerts that PixMin has detected

exceeds this number, PixMin will produce alerts that had the most alert counts within them.

14) Level 2 skip option < 0 or 1 >. If set to one, PixMin will not attempt Level 2 detection. As a

result, output alerts will be determined only by Level 1 detection. If set to zero, PixMin will

evaluate Level 2 alerts among Level 1 alerted blocks.

15) criteria pass-through option < 0 or 1 >. If set to one, the criterion values calculated from

Level 1 will be used as the input feature values for Level 2. If set to zero, they will not.

16) Level 2 alert block size < positive integer >. This is the number of pixel rows and columns

in each Level 2 alert block. This number should evenly divide the Level 1 alert block size.

17) Level 2 template matching basis < 0, 1, 2, 3, or 4 >. The same Level 1 template matching

basis description in 10) above applies here.

18) Level 2 pixel match cutoff value < numerical value >. The same Level 1 pixel match cutoff

value description in 11) above applies here.

19) Level 2 alert block cutoff value < positive integer >. The same Level 2 alert block cutoff

value description in 11) above applies here.

20) Level 2 maximum alerts < positive integer >. This is the maximum number of Level 2

alerts per image that PixMin will produce.

21) analysis < blank, a, b, c, or d >. This metric determines output analysis data. If left blank,

PixMin produces detection output but no analysis output. If set to a, b, or c, PixMin

produces analysis output (see Section 3.3, Note 8).

22) output detection folder < {input_metric_path}\..\output >. This path points to a folder

containing PixMin output detection alert map files, chip files, and optional analysis files.

23) no normal output option < 0 or 1 >. Normal image output may not be necessary when using

some analysis options, in which case PixMin produces no normal image output when this

metric is set to 1. Otherwise, it should be set to zero.

24) output alert map border width <positive integer >. PixMin distinguishes alerted regions

within alert maps by surrounding the regions with borders. This metric sets the border

width, in pixels. If alerted block boundaries fall on image borders, their alert blocks will be

pushed inside image borders as necessary to allow fitting boundaries around them at the

borders.

25) internal border removal option < 0 or 1 >. If set to one, PixMin removes borders within

overlapping alerted blocks in alert maps. If set to zero, PixMin does not.

